• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Machine Learning: From the Classics to Deep Networks, Transformers, and Diffusion Models

    Machine Learning by Theodoridis, Sergios;

    From the Classics to Deep Networks, Transformers, and Diffusion Models

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 107.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        44 788 Ft (42 656 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 8 958 Ft off)
      • Kedvezményes ár 35 831 Ft (34 125 Ft + 5% áfa)
      • A kedvezmény érvényes eddig: 2025. december 31.

    44 788 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: Várható beérkezés: 2026. január vége.
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Machine Learning: From the Classics to Deep Networks, Transformers and Diffusion Models, Third Edition starts with the basics, including least squares regression and maximum likelihood methods, Bayesian decision theory, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines. Bayesian learning is treated in detail with emphasis on the EM algorithm and its approximate variational versions with a focus on mixture modelling, regression and classification. Nonparametric Bayesian learning, including Gaussian, Chinese restaurant, and Indian buffet processes are also presented. Monte Carlo methods, particle filtering, probabilistic graphical models with emphasis on Bayesian networks and hidden Markov models are treated in detail. Dimensionality reduction and latent variables modelling are considered in depth. Neural networks and deep learning are thoroughly presented, starting from the perceptron rule and multilayer perceptrons and moving on to convolutional and recurrent neural networks, adversarial learning, capsule networks, deep belief networks, GANs, and VAEs. The book also covers the fundamentals on statistical parameter estimation and optimization algorithms.

    Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all methods and techniques are explained in depth, supported by examples and problems, providing an invaluable resource to the student and researcher for understanding and applying machine learning concepts.




    • Provides a number of case studies and applications on a variety of topics, such as target localization, channel equalization, image denoising, audio characterization, text authorship identification, visual tracking, change point detection, hyperspectral image unmixing, fMRI data analysis, machine translation, and text-to-image generation
    • Most chapters include a number of computer exercises in both MatLab and Python, and the chapters dedicated to deep learning include exercises in PyTorch

    New to this edition

    • The new material includes an extended coverage of attention transformers, large language models, self-supervised learning and diffusion models

    Több

    Tartalomjegyzék:

    1. Introduction
    2. Probability and Stochastic Processes
    3. Learning in Parametric Modelling: Basic Concepts and Directions
    4. Mean-Square Error Linear Estimation
    5. Stochastic Gradient Descent: the LMS Algorithm and its Family
    6. The Least-Squares Family
    7. Classification: A Tour of the Classics
    8. Parameter Learning: A Convex Analytic Path
    9. Sparsity-Aware Learning: Concepts and Theoretical Foundations
    10. Sparsity-Aware Learning: Algorithms and Applications
    11. Learning in Reproducing Kernel Hilbert Spaces
    12. Bayesian Learning: Inference and the EM Algorithm
    13. Bayesian Learning: Approximate Inference and Nonparametric Models
    14. Monte Carlo Methods
    15. Probabilistic Graphical Models: Part 1
    16. Probabilistic Graphical Models: Part 2
    17. Particle Filtering
    18. Neural Networks and Deep Learning: Part 1
    19. Neural Networks and Deep Learning: Part 2
    20. Dimensionality Reduction and Latent Variables Modeling

    Több