Interpretability of Computational Intelligence-Based Regression Models
Sorozatcím: SpringerBriefs in Computer Science;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 53.49
-
22 184 Ft (21 128 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 4 437 Ft off)
- Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
22 184 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2015
- Kiadó Springer International Publishing
- Megjelenés dátuma 2015. november 10.
- Kötetek száma 1 pieces, Book
- ISBN 9783319219417
- Kötéstípus Puhakötés
- Terjedelem82 oldal
- Méret 235x155 mm
- Súly 1533 g
- Nyelv angol
- Illusztrációk X, 82 p. 34 illus., 14 illus. in color. Illustrations, black & white 160
Kategóriák
Hosszú leírás:
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.
The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
TöbbTartalomjegyzék:
Introduction.- Interpretability of Hinging Hyperplanes.- Interpretability of Neural Networks.- Interpretability of Support Vector Machines.- Summary.
Több
Numerical Calculation for Physics Laboratory Projects Using Microsoft EXCEL?
32 765 Ft
30 144 Ft