• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems by Zhao, Yuqi;

    Probabilistic and Machine Learning Approaches

    Sorozatcím: Springer Theses;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 235.39
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        97 628 Ft (92 979 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 19 526 Ft off)
      • Kedvezményes ár 78 102 Ft (74 383 Ft + 5% áfa)

    97 628 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Springer Nature Switzerland
    • Megjelenés dátuma 2026. január 12.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031990472
    • Kötéstípus Keménykötés
    • Terjedelem209 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk XVII, 209 p. 85 illus., 78 illus. in color. Illustrations, black & white
    • 700

    Kategóriák

    Hosszú leírás:

    "

    This book tackles the technical challenges of integrating renewable energy sources into power grids to reduce exposure to significant financial and operational risks. It does so by introducing advanced methods for harmonic estimation and forecasting in sparsely monitored and uncertain power networks, leveraging probabilistic and machine learning techniques.

    With a focus on practical applications, the book introduces a Monte-Carlo-based simulation framework to address operational randomness and uncertainties, along with the development of a Norton equivalent model of wind farms for probabilistic harmonic propagation studies. The author also presents cost-effective methods for harmonic estimation in non-radial distribution networks and proposes a sequential artificial-neural-network-based approach for probabilistic harmonic forecasting in transmission networks with limited harmonic measurements. By significantly reducing the reliance on extensive power-quality-monitoring installations, these methods provide robust, accurate, and reliable harmonic data and enable more effective and informed decision-making for future power system operations.

    Targeted at academic researchers, industrial engineers, and graduate students, this book matches theoretical advance with practical application. It supports the assessment of standard compliance and benchmarking, minimizes the need for power-quality-monitoring installations, accelerates the evaluation of harmonic propagation and mitigation strategies in uncertain, power-electronics-rich networks, and advances the forecasting of potential harmonic issues in future power systems.

    "

    Több

    Tartalomjegyzék:

    Introduction.- Power System Harmonic Modelling.- Harmonic Simulation Studies.- Probabilistic Harmonic Estimation in Non-Radial Distribution Networks.- Application of Machine Learning for Harmonic Estimation in Transmission Networks.- Robustness of the Methodology for Harmonic Forecasting in Transmission Networks.- Conclusions and Future Work.- Appendices.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Machine Intelligence and Big Data Analytics for Cybersecurity Applications

    Maleh, Yassine; Shojafar, Mohammad; Alazab, Mamoun; Baddi, Youssef

    88 752 Ft

    71 002 Ft

    20% %kedvezmény
    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Binary Neural Networks: Algorithms, Architectures, and Applications

    Zhang, Baochang; Xu, Sheng; Lin, Mingbao;

    57 330 Ft

    45 864 Ft

    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    End-User Computing, Development, and Software Engineering: New Challenges

    Dwivedi, Ashish; Clarke, Steve; (ed.)

    87 512 Ft

    80 511 Ft

    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Avian Architecture Revised and Expanded Edition: How Birds Design, Engineer, and Build

    Goodfellow, Peter; , Williams, Tony D.; (ed.)

    11 943 Ft

    10 749 Ft

    20% %kedvezmény
    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Managing Overflow in Affluent Societies

    Czarniawska, Barbara; Löfgren, Orvar; (ed.)

    71 662 Ft

    57 330 Ft

    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Activity Based Physics Tutorials, Volume 2: Modern Physics, The Physics Suite

    Wittmann, Michael C.; Steinberg, Richard N.; Redish, Edward F.;

    52 547 Ft

    47 293 Ft

    20% %kedvezmény
    Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches

    Managing Overflow in Affluent Societies

    Czarniawska, Barbara; Löfgren, Orvar; (ed.)

    22 927 Ft

    18 341 Ft

    next