Foundations and Fundamental Concepts of Mathematics
Sorozatcím: Dover Books on Mathematics;
- Kiadói listaár GBP 14.49
-
6 922 Ft (6 592 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
6 922 Ft
Beszerezhetőség
Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 3 SUB
- Kiadó Dover Publications Inc.
- Megjelenés dátuma 2003. március 17.
- ISBN 9780486696096
- Kötéstípus Puhakötés
- Terjedelem368 oldal
- Méret 234x155 mm
- Súly 454 g
- Nyelv angol 0
Kategóriák
Rövid leírás:
Third edition of popular undergraduate-level text offers historic overview, readable treatment of mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, sets, more. Problems, some with solutions. Bibliography.
TöbbHosszú leírás:
Third edition of popular undergraduate-level text offers overview of historical roots and evolution of several areas of mathematics. Topics include mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, sets, and more. Emphasis on axiomatic procedures. Problems. Solution Suggestions for Selected Problems. Bibliography.
Third edition of popular undergraduate-level text offers historic overview, readable treatment of mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, sets, more. Problems, some with solutions. Bibliography.
Tartalomjegyzék:
1. Mathematics Before Euclid
1.1 The Empirical Nature of pre
-Hellenic Mathematics
1.2 Induction Versus Deduction
1.3 Early Greek Mathematics and the Introduction of Deductive Procedures
1.4 Material Axiomatics
1.5 The Origin of the Axiomatic Method
Problems
2. Euclid's Elements
2.1 The Importance and Formal Nature of Euclid's Elements
2.2 Aristotle and Proclus on the Axiomatic Method
2.3 Euclid's Definitions, Axioms, and Postulates
2.4 Some Logical Shortcomings of Euclid's Elements
2.5 The End of the Greek Period and the Transition to Modern Times
Problems
3. Non
-Euclidean Geometry
3.1 Euclid's Fifth Postulate
3.2 Saccheri and the Reductio ad Absurdum Method
3.3 The Work of Lambert and Legendre
3.4 The Discovery of Non
-Euclidean Geometry
3.5 The Consistency and the Significance of Non
-Euclidean Geometry
Problems
4. Hilbert's Grundlagen
4.1 The Work of Pasch, Peano, and Pieri
4.2 Hilbert's Grundlagen der Geometrie
4.3 Poincaré's Model and the Consistency of Lobachevskian Geometry
4.4 Analytic Geometry
4.5 Projective Geometry and the Principle of Duality
Problems
5. Algebraic Structure
5.1 Emergence of Algebraic Structure
5.2 The Liberation of Algebra
5.3 Groups
5.4 The Significance of Groups in Algebra and Geometry
5.5 Relations
Problems
6. Formal Axiomatics
6.1 Statement of the Modern Axiomatic Method
6.2 A Simple Example of a Branch of Pure Mathematics
6.3 Properties of Postulate Sets
-
-Equivalence and Consistency
6.4 Properties of Postulate Sets
-
-Independence, Completeness, and Categoricalness
6.5 Miscellaneous Comments
Problems
7. The Real Number System
7.1 Significance of the Real Number System for the Foundations of Analysis
7.2 The Postulational Approach to the Real Number System
7.3 The Natural Numbers and the Principle of Mathematical Induction
7.4 The Integers and the Rational Numbers
7.5 The Real Numbers and the Complex Numbers
Problems
8. Sets
8.1 Sets and Their Basic Relations and Operations
8.2 Boolean Algebra
8.3 Sets and the Foundations of Mathematics
8.4 Infinite Sets and Transfinite Numbers
8.5 Sets and the Fundamental Concepts of Mathematics
Problems
9. Logic and Philosophy
9.1 Symbolic Logic
9.2 The Calculus of Propositions
9.3 Other Logics
9.4 Crises in the Foundations of Mathematics
9.5 Philosophies of Mathematics
Problems
Appendix 1. The First Twenty
-Eight Propositions of Euclid
Appendix 2. Euclidean Constructions
Appendix 3. Removal of Some Redundancies
Appendix 4. Membership Tables
Appendix 5. A Constructive Proof of the Existence of Transcendental Numbers
Appendix 6. The Eudoxian Resolution of the First Crisis in the Foundations of Mathematics
Appendix 7. Nonstandard Analysis
Appendix 8. The Axiom of Choice
Appendix 9. A Note on Gödel's Incompleteness Theorem
Bibliography; Solution Suggestions for Selected Problems; Index
The Handbook of Language, Security, and Terrorism
17 194 Ft
15 474 Ft