• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

    Introduction to Applied Linear Algebra by Boyd, Stephen; Vandenberghe, Lieven;

    Vectors, Matrices, and Least Squares

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 43.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        20 543 Ft (19 565 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 054 Ft off)
      • Kedvezményes ár 18 489 Ft (17 609 Ft + 5% áfa)

    20 543 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Cambridge University Press
    • Megjelenés dátuma 2018. június 7.

    • ISBN 9781316518960
    • Kötéstípus Keménykötés
    • Terjedelem474 oldal
    • Méret 253x195x25 mm
    • Súly 1170 g
    • Nyelv angol
    • 10

    Kategóriák

    Rövid leírás:

    A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

    Több

    Hosszú leírás:

    This groundbreaking textbook combines straightforward explanations with a wealth of practical examples to offer an innovative approach to teaching linear algebra. Requiring no prior knowledge of the subject, it covers the aspects of linear algebra - vectors, matrices, and least squares - that are needed for engineering applications, discussing examples across data science, machine learning and artificial intelligence, signal and image processing, tomography, navigation, control, and finance. The numerous practical exercises throughout allow students to test their understanding and translate their knowledge into solving real-world problems, with lecture slides, additional computational exercises in Julia and MATLAB&&&174;, and data sets accompanying the book online. Suitable for both one-semester and one-quarter courses, as well as self-study, this self-contained text provides beginning students with the foundation they need to progress to more advanced study.

    'Introduction to Applied Linear Algebra fills a very important role that has been sorely missed so far in the plethora of other textbooks on the topic, which are filled with discussions of nullspaces, rank, complex eigenvalues and other concepts, and by way of 'examples', typically show toy problems. In contrast, this unique book focuses on two concepts only,&&&160;linear independence and QR factorization, and instead&&&160;insists on the crucial activity of modeling, showing via many well-thought out practical examples how a deceptively simple method such as least-squares is really empowering. A must-read introduction for any student in data science, and beyond!' Laurent El Ghaoui, University of California, Berkeley

    Több

    Tartalomjegyzék:

    Part I. Vectors: 1. Vectors; 2. Linear functions; 3. Norm and distance; 4. Clustering; 5. Linear independence; Part II. Matrices: 6. Matrices; 7. Matrix examples; 8. Linear equations; 9. Linear dynamical systems; 10. Matrix multiplication; 11. Matrix inverses; Part III. Least Squares: 12. Least squares; 13. Least squares data fitting; 14. Least squares classification; 15. Multi-objective least squares; 16. Constrained least squares; 17. Constrained least squares applications; 18. Nonlinear least squares; 19. Constrained nonlinear least squares; Appendix A; Appendix B; Appendix C; Appendix D; Index.

    Több