Federated and Transfer Learning
Sorozatcím: Adaptation, Learning, and Optimization; 27;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 160.49
-
66 563 Ft (63 393 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 13 313 Ft off)
- Kedvezményes ár 53 250 Ft (50 714 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
66 563 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2023
- Kiadó Springer International Publishing
- Megjelenés dátuma 2023. október 2.
- Kötetek száma 1 pieces, Book
- ISBN 9783031117503
- Kötéstípus Puhakötés
- Lásd még 9783031117473
- Terjedelem371 oldal
- Méret 235x155 mm
- Súly 581 g
- Nyelv angol
- Illusztrációk VIII, 371 p. 90 illus., 80 illus. in color. Illustrations, black & white 492
Kategóriák
Hosszú leírás:
This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressing theoretical issues on improving the privacy and incentive factors of federated learning as well as its connection with transfer learning and reinforcement learning. Over the last few years, the machine learning community has become fascinated by federated and transfer learning. Transfer and federated learning have achieved great success and popularity in many different fields of application. The intended audience of this book is students and academics aiming to apply federated and transfer learning to solve different kinds of real-world problems, as well as scientists, researchers, and practitioners in AI industries, autonomous vehicles, and cyber-physical systems who wish to pursue new scientific innovations and update their knowledge on federated and transfer learning and their applications.
TöbbTartalomjegyzék:
An Introduction to Federated and Transfer Learning.- Federated Learning for Resource-Constrained IoT Devices: Panoramas and State of the Art.- Federated and Transfer Learning: A Survey on Adversaries and Defense Mechanisms.- Cross-silo Federated Neural Architecture Search for Heterogeneous and Cooperative Systems.- A Unifying Framework for Federated Learning.- A Contract Theory based Incentive Mechanism for Federated Learning.- A Study of Blockchain-based Federated Learning.- Swarm Meta Learning.- Rethinking Importance Weighting for Transfer Learning.- Transfer Learning via Representation Learning.- Modeling Individual Humans via a Secondary Task Transfer Learning Method.- From Theoretical to Practical Transfer Learning: The Adapt Library.- Lyapunov Robust Constrained-MDPs for Sim2Real Transfer Learning.- A Study on Efficient Reinforcement Learning Through Knowledge Transfer.- Federated Transfer Reinforcement Learning for Autonomous Driving.
Több
The Argument of Psellos' Chronographia
68 433 Ft
62 959 Ft