• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Data Mining for Business Applications

    Data Mining for Business Applications by Cao, Longbing; Yu, Philip S.; Zhang, Chengqi; Zhang, Huaifeng;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 106.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        44 374 Ft (42 261 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 8 875 Ft off)
      • Kedvezményes ár 35 499 Ft (33 809 Ft + 5% áfa)

    44 374 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Data Mining for Business Applications presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from “data-centered pattern mining” to “domain driven actionable knowledge discovery” for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business.

    Több

    Tartalomjegyzék:

    Domain Driven KDD Methodology.- to Domain Driven Data Mining.- Post-processing Data Mining Models for Actionability.- On Mining Maximal Pattern-Based Clusters.- Role of Human Intelligence in Domain Driven Data Mining.- Ontology Mining for Personalized Search.- Novel KDD Domains & Techniques.- Data Mining Applications in Social Security.- Security Data Mining: A Survey Introducing Tamper-Resistance.- A Domain Driven Mining Algorithm on Gene Sequence Clustering.- Domain Driven Tree Mining of Semi-structured Mental Health Information.- Text Mining for Real-time Ontology Evolution.- Microarray Data Mining: Selecting Trustworthy Genes with Gene Feature Ranking.- Blog Data Mining for Cyber Security Threats.- Blog Data Mining: The Predictive Power of Sentiments.- Web Mining: Extracting Knowledge from the World Wide Web.- DAG Mining for Code Compaction.- A Framework for Context-Aware Trajectory.- Census Data Mining for Land Use Classification.- Visual Data Mining for Developing Competitive Strategies in Higher Education.- Data Mining For Robust Flight Scheduling.- Data Mining for Algorithmic Asset Management.

    Több
    Mostanában megtekintett