Data Mining for Business Applications
- Publisher's listprice EUR 106.99
-
44 374 Ft (42 261 Ft + 5% VAT)
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 8 875 Ft off)
- Discounted price 35 499 Ft (33 809 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
44 374 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2009
- Publisher Springer US
- Date of Publication 9 October 2008
- Number of Volumes 1 pieces, Book
- ISBN 9780387794198
- Binding Hardback
- No. of pages302 pages
- Size 235x155 mm
- Weight 1390 g
- Language English
- Illustrations XX, 302 p. Illustrations, black & white 0
Categories
Long description:
Data Mining for Business Applications presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from “data-centered pattern mining” to “domain driven actionable knowledge discovery” for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business.
MoreTable of Contents:
Domain Driven KDD Methodology.- to Domain Driven Data Mining.- Post-processing Data Mining Models for Actionability.- On Mining Maximal Pattern-Based Clusters.- Role of Human Intelligence in Domain Driven Data Mining.- Ontology Mining for Personalized Search.- Novel KDD Domains & Techniques.- Data Mining Applications in Social Security.- Security Data Mining: A Survey Introducing Tamper-Resistance.- A Domain Driven Mining Algorithm on Gene Sequence Clustering.- Domain Driven Tree Mining of Semi-structured Mental Health Information.- Text Mining for Real-time Ontology Evolution.- Microarray Data Mining: Selecting Trustworthy Genes with Gene Feature Ranking.- Blog Data Mining for Cyber Security Threats.- Blog Data Mining: The Predictive Power of Sentiments.- Web Mining: Extracting Knowledge from the World Wide Web.- DAG Mining for Code Compaction.- A Framework for Context-Aware Trajectory.- Census Data Mining for Land Use Classification.- Visual Data Mining for Developing Competitive Strategies in Higher Education.- Data Mining For Robust Flight Scheduling.- Data Mining for Algorithmic Asset Management.
More
Memory
19 582 HUF
17 624 HUF