• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Artificial Intelligence and Machine Learning for Climate Disaster Management

    Artificial Intelligence and Machine Learning for Climate Disaster Management by Kumar, Deepak; Bassill, Nick P.;

    Sorozatcím: Disaster Resilience and Green Growth;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 181.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        75 438 Ft (71 846 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 15 088 Ft off)
      • Kedvezményes ár 60 351 Ft (57 477 Ft + 5% áfa)

    75 438 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    "

    This edited volume highlights the importance of Artificial Intelligence (AI) and Machine Learning (ML) being utilised in climate disaster management to enhance preparedness, response, recovery, and mitigation efforts. The integration of AI and ML technologies with climate disaster management greatly improves decision-making, resource allocation, and overall effectiveness in addressing the impacts of climate-related disasters. It serves as a comprehensive guide to harnessing the power of geospatial information and services for climate-resilient disaster management.

    This book is a timely exploration of how cutting-edge technology can shape our response to climate-related disasters. The book embarks on a journey through the intricate web of geospatial data, uncovering its indispensable role in disaster preparedness, response, and recovery. Several ways in which AI and ML are being applied comprise Early Warning Systems, Disaster Response Planning, Damage Assessment, Risk Assessment and Vulnerability Mapping, Climate Modeling and Simulation, Resilience and Adaptation Strategies, Satellite Imagery for Disaster Response, Vulnerability Mapping and Resilience Planning, Data Integration in Emergency Response, Climate Adaptation Policies, among many others. Real-world case studies and practical insights illustrate how geospatial technology empowers early warning systems, enhances risk assessment, and streamlines resource allocation. It delves into the nuances of climate adaptation planning, shedding light on innovative strategies for building resilient communities and infrastructure.

    This book will serve as an invaluable resource for policymakers, disaster managers, researchers, and anyone concerned with safeguarding communities against climate-related disasters.

    "

    Több

    Tartalomjegyzék:

    Chapter 1. Artificial Intelligence and Machine Learning for Climate Disaster Management.- Chapter 2. The Climate Science, designing, and implementation of Climate Policy.- Chapter 3. Strategic Integration of Green Innovation and Information Systems for Sustainable Development.- Chapter 4. Artificial Intelligence and Machine Learning to Assess the Effects of COVID-19 on Land Surface Temperature (LST) and Air Quality Index.- Chapter 5. Trend analysis of long-term temperature data for prediction of heat waves through statistical analysis using extreme value theory for climate disaster management.- Chapter 6. Risk Assessment and Vulnerability Mapping of Soil Erosion for Climate Resilient Disaster Management with Geospatial Techniques.- Chapter 7. A Geospatial approach for DEM-Based Surface Hydrological Modelling of Sub-Watersheds towards Climate Disaster Management.- Chapter 8. Urban Heat Island Mitigation through Green Infrastructure for Sustainable Development.- Chapter 9. Identification of soil erosion susceptible areas with analytical hierarchy process (AHP) modelling for climate disaster management.- Chapter 10. Role of Artificial Intelligence and Machine Learning for Climate Disaster Management and Earth Resource Management.- Chapter 11. From Data to Planning: Innovations through LiDAR technology and data science in Sustainable Urban Resource Management.- Chapter 12. Beyond the Office Walls: Exploring Nature Connectedness for Climate Stress and Disaster Management.- Chapter 13. Challenges and Future Trends in Climate Disaster Management.

    Több