Inferences Using Progressive Censoring
with Random Removals from Burr-X
-
5% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 49.00
-
20 322 Ft (19 355 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 5% (cc. 1 016 Ft off)
- Kedvezményes ár 19 307 Ft (18 387 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
20 322 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó LAP Lambert Academic Publishing
- Megjelenés dátuma 2012. január 1.
- ISBN 9783847319368
- Kötéstípus Puhakötés
- Terjedelem116 oldal
- Méret 220x150 mm
- Nyelv angol 0
Kategóriák
Hosszú leírás:
Censored sampling arises in a life testing experiment whenever the experimenter does not observe the failure times of all items placed on a life test. Progressive censoring scheme is useful in both industrial life testing applications and clinical settings; it allows the removal of surviving experimental units before the termination of the test. In this book, we obtain the maximum likelihood, and Bayes estimations for the parameter of the Burr-X model as well as the binomial parameter, based on progressive first-failure censoring with binomial removals. Bayes estimators under symmetric and asymmetric loss functions are obtained. Three special cases from this censoring scheme have been considered. Farther, we discuss the problem of predicting future record values and ordinary order statistics from Burr-X model based on progressively type-II censored with random removals, were the number of units removed at each failure time has a discrete binomial distribution. We use the Bayes procedure to derive both point and interval prediction. The maximum likelihood prediction both point and interval using "plug-in" procedure for future record values and ordinary order statistics are derived.
Több