• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Knowledge Discovery from Multi-Sourced Data

    Knowledge Discovery from Multi-Sourced Data by Ye, Chen; Wang, Hongzhi; Dai, Guojun;

    Sorozatcím: SpringerBriefs in Computer Science;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 184 Ft (21 128 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 437 Ft off)
      • Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)

    22 184 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.
    Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to “label” or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.
    At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved.

    Több

    Tartalomjegyzék:

    1. ​Introduction.- 2. Functional-dependency-based truth discovery for isomorphic data.- 3. Denial-constraint-based truth discovery for isomorphic data.- 4. Pattern discovery for heterogeneous data.- 5. Deep fact discovery for text data.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Knowledge Discovery from Multi-Sourced Data

    Knowledge Discovery from Multi-Sourced Data

    Ye, Chen; Wang, Hongzhi; Dai, Guojun

    22 184 Ft

    17 748 Ft

    20% %kedvezmény
    Knowledge Discovery from Multi-Sourced Data

    An Introduction to Biological Control

    Gutierrez, A.P.; Messenger, P.S.; van den Bosch, R.

    44 374 Ft

    35 499 Ft

    20% %kedvezmény
    Knowledge Discovery from Multi-Sourced Data

    Advances in Architecture, Engineering and Technology

    Rosso, Federica; Fabiani, Claudia; Altan, Haşim; Amer, Mourad

    66 563 Ft

    53 250 Ft

    20% %kedvezmény
    Knowledge Discovery from Multi-Sourced Data

    Smart Technologies in Data Science and Communication: Proceedings of SMART-DSC 2021

    Saha, Sanjoy Kumar; Pang, Paul S.; Bhattacharyya, Debnath

    88 752 Ft

    71 002 Ft

    Knowledge Discovery from Multi-Sourced Data

    Handbook of Research on Advanced Intelligent Control Engineering and Automation

    Azar, Ahmad Taher; Vaidyanathan, Sundarapandian; (ed.)

    150 139 Ft

    138 128 Ft

    next