A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 60.00
-
28 665 Ft (27 300 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 5 733 Ft off)
- Kedvezményes ár 22 932 Ft (21 840 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
28 665 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Second Edition
- Kiadó SAGE Publications, Inc
- Megjelenés dátuma 2016. május 19.
- ISBN 9781483377445
- Kötéstípus Puhakötés
- Terjedelem384 oldal
- Méret 228x152 mm
- Nyelv angol 0
Kategóriák
Rövid leírás:
Written with those with limited mathematical and statistical knowledge in mind, this concise and practical guide helps researchers to do their research in new and alternative ways.
TöbbHosszú leírás:
With applications using SmartPLS —the primary software used in partial least squares structural equation modeling (PLS-SEM)—this practical guide provides concise instructions on how to use this evolving statistical technique to conduct research and obtain solutions. Featuring the latest research, new examples, and expanded discussions throughout, the Second Edition is designed to be easily understood by those with limited statistical and mathematical training who want to pursue research opportunities in new ways.
Please note that all examples in this Second Edition use SmartPLS 3. To access this software, please visit
“A text that students will find easy to read and enjoyable.” Több
Tartalomjegyzék:
Chapter 1: An Introduction to Structural Equation Modeling
What Is Structural Equation Modeling?
Considerations in Using Structural Equation Modeling
Structural Equation Modeling With Partial Least Squares Path Modeling
PLS-SEM, CB-SEM, and Regressions Based on Sum Scores
Organization of Remaining Chapters
Chapter 2: Specifying the Path Model and Examining Data
Stage 1: Specifying the Structural Model
Stage 2: Specifying the Measurement Models
Stage 3: Data Collection and Examination
Case Study Illustration: Specifying the PLS-SEM Model
Path Model Creation Using the SmartPLS Software
Chapter 3: Path Model Estimation
Stage 4: Model Estimation and the PLS-SEM Algorithm
Case Study Illustration: PLS Path Model Estimation (Stage 4)
Chapter 4: Assessing PLS-SEM Results Part I: Evaluation of Reflective Measurement Models
Overview of Stage 5: Evaluation of Measurement Models
Stage 5a: Assessing Results of Reflective Measurement Models
Case Study Illustration—Reflective Measurement Models
Running the PLS-SEM Algorithm
Reflective Measurement Model Evaluation
Chapter 5: Assessing PLS-SEM Results Part II: Evaluation of the Formative Measurement Models
Stage 5b: Assessing Results of Formative Measurement Models
Bootstrapping Procedure
Bootstrap Confidence Intervals
Case Study Illustration—Evaluation of Formative Measurement Models
Chapter 6: Assessing PLS-SEM Results Part III: Evaluation of the Structural Model
Stage 6: Assessing PLS-SEM Structural Model Results
Case Study Illustration—How Are PLS-SEM Structural Model Results Reported?
Chapter 7: Mediator and Moderator Analysis
Mediation
Moderation
Chapter 8: Outlook on Advanced Methods
Importance-Performance Map Analysis
Hierarchical Component Models
Confirmatory Tetrad Analysis
Dealing With Observed and Unobserved Heterogeneity
Consistent Partial Least Squares