Transfer Learning
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 60.00
-
28 665 Ft (27 300 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 5 733 Ft off)
- Kedvezményes ár 22 932 Ft (21 840 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
28 665 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Cambridge University Press
- Megjelenés dátuma 2020. február 13.
- ISBN 9781107016903
- Kötéstípus Keménykötés
- Terjedelem390 oldal
- Méret 235x156x21 mm
- Súly 730 g
- Nyelv angol
- Illusztrációk 143 b/w illus. 28
Kategóriák
Rövid leírás:
This in-depth tutorial for students, researchers, and developers covers foundations, plus applications ranging from search to multimedia.
TöbbHosszú leírás:
Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
'Transfer learning is a critically important approach in settings where data is sparse or expensive. This comprehensive text focuses on when to transfer, what to transfer, and how to transfer previously learned knowledge into a novel current task. The authors cover historic methods as well as very recent methods, classifying them into a comprehensive ontology of transfer learning methods. Through its coverage of basic methods, advanced methods, and multiple application domains, the text will provide a useful guide to both novice and the experienced researchers and practitioners.' Matthew E. Taylor, Principal Researcher at Borealis AI, Edmonton
Tartalomjegyzék:
1. Introduction; 2. Instance-based transfer learning; 3. Feature-based transfer learning; 4. Model-based transfer learning; 5. Relation-based transfer learning; 6. Heterogeneous transfer learning; 7. Adversarial transfer learning; 8. Transfer learning in reinforcement learning; 9 Multi-task learning; 10. Transfer learning theory; 11. Transitive transfer learning; 12. AutoTL: learning to transfer automatically; 13. Few-shot learning; 14. Lifelong machine learning; 15. Privacy-preserving transfer learning; 16. Transfer learning in computer vision; 17. Transfer learning in natural language processing; 18. Transfer learning in dialogue systems; 19. Transfer learning in recommender systems; 20. Transfer learning in bioinformatics; 21. Transfer learning in activity recognition; 22. Transfer learning in urban computing; 23. Concluding remarks.
Több
Beauty and the Beast Instrumental Play-Along - Flute Book/Online Audio [With Access Code]: Flute [With Access Code]
4 569 Ft
4 203 Ft
A.J.P. Taylor: Radical Historian of Europe
16 721 Ft
14 547 Ft