
The Geometry and Topology of Coxeter Groups
Sorozatcím: Springer Monographs in Mathematics;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 181.89
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 15 431 Ft off)
- Discounted price 61 726 Ft (58 786 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
77 157 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Second Edition 2025
- Kiadó Springer
- Megjelenés dátuma 2025. augusztus 3.
- Kötetek száma 1 pieces, Book
- ISBN 9783031913020
- Kötéstípus Keménykötés
- Terjedelem571 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk 30 Illustrations, black & white; 1 Illustrations, color 700
Kategóriák
Rövid leírás:
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf’s theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov’s theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
TöbbHosszú leírás:
This book, now in a revised and extended second edition, offers an in-depth account of Coxeter groups through the perspective of geometric group theory. It examines the connections between Coxeter groups and major open problems in topology related to aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer Conjectures. The book also discusses key topics in geometric group theory and topology, including Hopf’s theory of ends, contractible manifolds and homology spheres, the Poincaré Conjecture, and Gromov’s theory of CAT(0) spaces and groups. In addition, this second edition includes new chapters on Artin groups and their Betti numbers. Written by a leading expert, the book is an authoritative reference on the subject.
TöbbTartalomjegyzék:
Chapter 1. Introduction and preview.- Chapter 2. Some basic notions in geometric group theory.- Chapter 3. Coxeter groups.- Chapter 4. More combinatorics of Coxeter groups.- Chapter 5. The basic construction.- Chapter 6. Geometric reflection groups.- Chapter 7. The complex E.- Chapter 8. The algebraic topology of U and of E.- Chapter 9. The fundamental group and the fundamental group at infinity.- Chapter 10. Actions on manifolds.- Chapter 11. The reflection group trick.- Chapter 12. E is CAT(0).- Chapter 13. Rigidity.- Chapter 14. Free quotients and surface subgroups.- Chapter 15. Another look at (co)homology.- Chapter 16. The Euler characteristic.- Chapter 17. Growth series.- Chapter 18. Artin Groups.- Chapter 19. L2-Betti numbers of Artin groups.- Chapter 20. Buildings.- Chapter 21. Hecke - von Neumann algebras.- Chapter 22. Weighted L2- (co)homology.
Több