• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Statistical Techniques for Neuroscientists

    Statistical Techniques for Neuroscientists by Truong, Young K.; Lewis, Mechelle M.;

    Sorozatcím: Frontiers in Neuroscience;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 44.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        21 493 Ft (20 470 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 299 Ft off)
      • Kedvezményes ár 17 195 Ft (16 376 Ft + 5% áfa)

    21 493 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1
    • Kiadó CRC Press
    • Megjelenés dátuma 2024. október 14.

    • ISBN 9781032920276
    • Kötéstípus Puhakötés
    • Terjedelem446 oldal
    • Méret 234x156 mm
    • Súly 453 g
    • Nyelv angol
    • Illusztrációk 61 Illustrations, black & white
    • 604

    Kategóriák

    Rövid leírás:

    An ideal introduction to statistical neurocomputing, this book examines current statistical methods for solving emerging problems in neuroscience. These methods have been applied to data involving multichannel neural spike train, spike sorting, blind source separation, functional and effective neural connectivity, spatiotemporal modeling, and mu

    Több

    Hosszú leírás:

    Statistical Techniques for Neuroscientists introduces new and useful methods for data analysis involving simultaneous recording of neuron or large cluster (brain region) neuron activity. The statistical estimation and tests of hypotheses are based on the likelihood principle derived from stationary point processes and time series. Algorithms and software development are given in each chapter to reproduce the computer simulated results described therein.

    The book examines current statistical methods for solving emerging problems in neuroscience. These methods have been applied to data involving multichannel neural spike train, spike sorting, blind source separation, functional and effective neural connectivity, spatiotemporal modeling, and multimodal neuroimaging techniques. The author provides an overview of various methods being applied to specific research areas of neuroscience, emphasizing statistical principles and their software. The book includes examples and experimental data so that readers can understand the principles and master the methods.

    The first part of the book deals with the traditional multivariate time series analysis applied to the context of multichannel spike trains and fMRI using respectively the probability structures or likelihood associated with time-to-fire and discrete Fourier transforms (DFT) of point processes. The second part introduces a relatively new form of statistical spatiotemporal modeling for fMRI and EEG data analysis. In addition to neural scientists and statisticians, anyone wishing to employ intense computing methods to extract important features and information directly from data rather than relying heavily on models built on leading cases such as linear regression or Gaussian processes will find this book extremely helpful.

    Több

    Tartalomjegyzék:

    STATISTICAL ANALYSIS OF NEURAL SPIKE TRAIN DATA. Statistical Modeling of Neural Spike Train Data. Regression Spline. STATISTICAL ANALYSIS OF FMRI DATA. Hypothesis Testing Approach. An Efficient Estimate of HRF. Independent Component Analysis. Instantaneous Independent Component Analysis. Colored Independent Component Analysis. Group Blind Source Separation (GBSS). Diagnostic Probability Modeling. Supervised SVD. Appendices.

    Több