• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Spatial Modeling in GIS and R for Earth and Environmental Sciences

    Spatial Modeling in GIS and R for Earth and Environmental Sciences by Pourghasemi, Hamid Reza; Gokceoglu, Candan;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 162.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        67 189 Ft (63 990 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 13 438 Ft off)
      • Kedvezményes ár 53 752 Ft (51 192 Ft + 5% áfa)

    67 189 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions.

    The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling.

    Több

    Tartalomjegyzék:

    1. Spatial Analysis of Extreme Rainfall Values Based on Support Vector Machines Optimized by Genetic Algorithms: The Case of Alfeios Basin, Greece
    2. Remotely Sensed Spatial and Temporal Variations of Vegetation Indices Subjected to Rainfall Amount and Distribution Properties
    3. Numerical Recipes for Landslide Spatial Prediction by Using R-INLA: A Step-By-Step Tutorial
    4. An Integrative Approach of Geospatial Multi-Criteria Decision Analysis for Forest Operational Planning
    5. Parameters Optimization of KINEROS2 Using Particle Swarm Optimization Algorithm within R Environment for Rainfall-Runoff Simulation
    6. Land-Subsidence Spatial Modeling Using Random Forest Data Mining Technique
    7. GIS-Based SWARA and its Ensemble by RBF and ICA Data Mining Techniques for Determining Suitability of Existing Schools and Site Selection of New School Buildings
    8. Application of SWAT and MCDM Models for Identifying and Ranking the Suitable Sites for Subsurface Dams
    9. Habitat Suitability Mapping of Artemisia Aucheri Boiss Based on GLM Model in R
    10. Flood-Hazard Assessment Modeling Using Multi-Criteria Analysis and GIS: A Case Study: Ras Gharib Area, Egypt
    11. Landslide Susceptibility Survey Using Modelling Methods
    12. Prediction of Soil Disturbance Susceptibility Maps of Forest Harvesting Using R and GIS-Based Data Mining Techniques
    13. Spatial Modeling of Gully Erosion Using Linear and Quadratic Discriminant Analyses in GIS and R
    14. Artificial Neural Networks for Flood Susceptibility Mapping in Data-Scarce Urban Areas
    15. Modelling the Spatial Variability of Forest Fire Susceptibility Using Geographical Information Systems (GIS) and Analytical Hierarchy Process (AHP)
    16. Prioritization of Flood Inundation of Maharloo Watershed in Iran Using Morphometric Parameters Analysis and TOPSIS MCDM Model
    17. A Robust R-M-R (Remote Sensing - Spatial Modeling - Remote Sensing) Approach for Flood Hazard Assessment
    18. Prioritization of Effective Factors on Zataria Multiflora Habitat Suitability and Its Spatial Modeling
    19. Prediction of Soil Organic Carbon Using Regression Kriging Model and Remote Sensing Data
    20. 3D Reconstruction of Landslides for the Acquisition of Digital Databases and Monitoring Spatio-Temporal Dynamics of Landslides based on GIS Spatial Analysis and UAV Techniques
    21. A Comparative Study of Functional Data Analysis and Generalized Linear Model Data Mining Techniques for Landslide Spatial Modelling
    22. Regional Groundwater Potential Analysis Using Classification and Regression Trees
    23. Comparative Evaluation of Decision-Forest Algorithms in Object-Based Land Use and Land Cover Mapping
    24. Statistical Modelling of Landslides: Landslide Susceptibility and Beyond
    25. Assessing the Vulnerability of Groundwater to Salinization Using GIS-Based Data Mining Techniques in a Coastal Aquifer
    26. A Framework for Multiple Moving Objects Detection in Aerial Videos
    27. Modelling Soil Burn Severity Prediction for Planning Measures to Mitigate Post Wildfire Soil Erosion in NW Spain
    28. Factors Influencing Regional Scale Wildfire Probability in Iran: An Application of Random Forest and Support Vector Machine
    29. Land Use/Land Cover Change Detection and Urban Sprawl Analysis
    30. Spatial Modeling of Gully Erosion: A New Ensemble of CART and GLM Data Mining Algorithms
    31. Multi-Hazard Exposure Assessment on the Valjevo City Road Network
    32. Producing a Spatially Focused Landslide Susceptibility Map Using an Ensemble of Shannon's Entropy and Fractal Dimension (The Ziarat Watershed, Iran)
    33. A Conceptual Model on Relationship between Plant Spatial Distribution and Desertification Trend in Rangeland Ecosystems

    Több