• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Simple Statistics: Applications in Social Research

    Simple Statistics by Miethe, Terance D.; Gauthier, Jane Florence;

    Applications in Social Research

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 74.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        35 826 Ft (34 120 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 3 583 Ft off)
      • Kedvezményes ár 32 243 Ft (30 708 Ft + 5% áfa)

    35 826 Ft

    Beszerezhetőség

    A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma PAP/CDR
    • Kiadó OUP USA
    • Megjelenés dátuma 2008. október 23.

    • ISBN 9780195332544
    • Kötéstípus Puhakötés
    • Terjedelem352 oldal
    • Méret 235x180x12 mm
    • Súly 534 g
    • Nyelv angol
    • Illusztrációk 24 illus.
    • 0

    Kategóriák

    Hosszú leírás:



    Több

    Tartalomjegyzék:

    1. Introduction to Statistical Thinking
    2. Garbage In, Garbage Out
    Measurement Invalidity
    Sampling Problems
    Faulty Causal Inferences
    Political Influences
    Human Fallibility
    3. Issues in Data Preparation
    Why Is Data Preparation Important?
    Operationalization and Measurement
    Nominal Measurement of Qualitative Variables
    Measurement of Quantitative Variables
    Issues in Levels of Measurement
    Coding and Inputting Statistical Data
    Available Computer Software for Basic Data Analysis
    4. Displaying Data in Tables and Graphic Forms
    The Importance of Data Tables and Graphs
    Types of Tabular and Visual Presentations
    Tables and Graphs for Qualitative Variables
    Tables and Graphs for Quantitative Variables
    Ratios and Rates
    Maps of Qualitative and Quantitative Variables
    Hazards and Distortions in Visual Displays and Collapsing Categories
    5. Modes, Medians, Means, and More
    Modes and Modal Categories
    The Median and Other Measures of Location
    The Mean and Its Meaning
    Weighted Means
    Strengths and Limitations of Mean Ratings
    Choice of Measure of Central Tendency and Position
    6. Measures of Variation and Dispersion
    The Range of Scores
    The Variance and Standard Deviation
    Variances and Standard Deviations for Binary Variables
    Population versus Sample Variances & Standard Deviations
    7. The Normal Curve and Sampling Distributions
    The Normal Curve
    Z-Scores as Standard Scores
    Reading a Normal Curve Table
    Other Sampling Distributions
    Binomial Distribution
    t-Distribution
    Chi-Square Distribution
    F-Distribution
    8. Parameter Estimation and Confidence Intervals
    Sampling Distributions and the Logic of Parameter Estimation
    Inferences from Sampling Distributions to One Real Sample
    Confidence Intervals: Large Samples, ? Known
    Confidence Intervals for Population Means
    Confidence Intervals for Population
    Proportions
    Confidence Intervals: Small Samples and Unknown ?
    Properties of the t-Distribution
    Confidence Intervals for Population Means for Unknown ?
    Confidence Intervals for Population
    Proportion for Unknown ?
    9. Introduction to Hypothesis Testing
    Confidence Intervals Versus Hypothesis Testing
    Basic Terminology and Symbols
    Types of Hypotheses
    Zone of Rejection and Critical Values
    Significance Levels and Errors in Decision-Making
    10. Hypothesis Testing for Means and Proportions
    Types of Hypothesis Testing
    One-Sample Tests of the Population Mean
    One-Sample Tests of a Population Proportion
    Two Sample Test of Differences in Population Means
    Two Sample Tests of Differences in Population Proportions
    Issues in Testing Statistical Hypotheses
    11. Statistical Association in Contingency Tables
    The Importance of Statistical Association and Contingency Tables
    The Structure of a Contingency Table
    Developing Tables of Total, Row, and Column Percentages
    The Rules for Interpreting a Contingency Table
    Specifying Causal Relations in Contingency Tables
    Assessing the Magnitude of Bivariate
    Associations in Contingency Tables
    Visual and Intuitive Approach
    The Chi-Square Test of Statistical Independence
    Issues in Contingency Table Analysis
    How Many Categories for Categorical Variables?
    GIGO and the Value of Theory in Identifying Variables
    Sample Size and Significance Tests
    Other Measures of Association for Categorical Variables
    12. The Analysis of Variance (ANOVA)
    Overview of ANOVA and When it is Used
    Partitioning Variation into Between and Within Group Differences
    Calculating the Total Variation in a Dependent Variable
    Calculating the Between-Group Variation
    Calculating the Within-Group Variation
    Hypothesis Testing and Measures of Association in ANOVA
    Testing the Hypothesis of Equality of Group Means
    Measures of Association in ANOVA
    Issues in the Analysis of Variance
    13. Correlation and Regression
    The Scatterplot of Two Interval/Ratio Variables
    The Correlation Coefficient
    Regression Analysis
    The Computation of the Regression
    Coefficient & Y-Intercept
    Goodness of Fit of a Regression Equation
    Hypothesis Testing and Tests of Statistical Significance
    Using Regression Analysis for Predicting Outcomes
    Issues in Bivariate Regression and Correlation Analysi
    14. Introduction to Multivariate Analysis
    Why Do Multivariate Analysis?
    Exploring Multiple Causes
    Statistical Control
    Types of Multivariate Analysis
    Multivariate Contingency Table Analysis
    Partial Correlation Coefficients
    Multiple Regression Analysis

    Több