• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies

    Reinforcement Learning for Cyber-Physical Systems by Li, Chong; Qiu, Meikang;

    with Cybersecurity Case Studies

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 82.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        39 648 Ft (37 760 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 7 930 Ft off)
      • Kedvezményes ár 31 718 Ft (30 208 Ft + 5% áfa)

    39 648 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1
    • Kiadó Chapman and Hall
    • Megjelenés dátuma 2019. február 4.

    • ISBN 9781138543539
    • Kötéstípus Keménykötés
    • Terjedelem256 oldal
    • Méret 234x156 mm
    • Súly 522 g
    • Nyelv angol
    • Illusztrációk 64 Illustrations, black & white; 4 Tables, black & white
    • 0

    Kategóriák

    Rövid leírás:

    This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

    Több

    Hosszú leírás:

    Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids.


    However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques.


    Features




    • Introduces reinforcement learning, including advanced topics in RL



    • Applies reinforcement learning to cyber-physical systems and cybersecurity



    • Contains state-of-the-art examples and exercises in each chapter



    • Provides two cybersecurity case studies


    Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.

    Több

    Tartalomjegyzék:

     

    Section I Introduction


    Chapter 1 □ Overview of Reinforcement Learning


    Chapter 2 □ Overview of CyberPhysical Systems and Cybersecurity


    Section II Reinforcement Learning for Cyber-Physical Systems


    Chapter 3 □ Reinforcement Learning Problems


    Chapter 4 □ Modelbased Reinforcement Learning


    Chapter 5 □ Modelfree Reinforcement Learning


    Chapter 6 □ Deep Reinforcement Learning


    Section III Case Studies


    Chapter 7 □ Reinforcement Learning for Cybersecurity


    Chapter 8 □ Case Study: Online CyberAttack Detection in Smart Grid


    Chapter 9 □ Case Study: Defeat Maninthemiddle Attack


    Több