Quantification of Uncertainty: Improving Efficiency and Technology
QUIET selected contributions
Sorozatcím: Lecture Notes in Computational Science and Engineering; 137;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 106.99
-
44 374 Ft (42 261 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 8 875 Ft off)
- Kedvezményes ár 35 499 Ft (33 809 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
44 374 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2020
- Kiadó Springer International Publishing
- Megjelenés dátuma 2020. július 31.
- Kötetek száma 1 pieces, Book
- ISBN 9783030487201
- Kötéstípus Keménykötés
- Terjedelem282 oldal
- Méret 235x155 mm
- Súly 612 g
- Nyelv angol
- Illusztrációk XI, 282 p. 113 illus., 90 illus. in color. Illustrations, black & white 75
Kategóriák
Hosszú leírás:
This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
Több
Tartalomjegyzék:
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods.- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property.- 3. D’Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification.- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow.- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields.- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models.- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains.- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions.- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows.- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives.- 11. Bulté, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
Több