• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Pattern Recognition and Machine Learning for Self-Study I by Ishii, Kenichiro; Ueda, Naonori; Maeda, Eisaku; Murase, Hiroshi;

    Supervised Learning

    Sorozatcím: Springer Asia Pacific Mathematics Series;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 74.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        31 060 Ft (29 581 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 6 212 Ft off)
      • Kedvezményes ár 24 848 Ft (23 665 Ft + 5% áfa)

    31 060 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    "

    This book explains the basic principles of pattern recognition (PR) and machine learning (ML) in an easy-to-understand manner for beginners who are trying to learn these principles on their own. Readers with a basic knowledge of linear algebra and probability theory will find it easy to follow.

    Many excellent books in this field have been published in the past. However, these books are not necessarily intended for self-study by beginners.

    This book limits the topics to the minimum essential themes that beginners should learn, and explains them in detail. This book focuses on supervised learning, first introducing classical but important methods that have contributed to the development of the field. It then explains various methods that have since attracted attention. In explaining these methods, the book also provides a historical account of how new technologies were created as a result of combining classical ideas. The book emphasizes that Bayes decision rule is a fundamental concept in PR and ML.

    The following points make this book suitable for self-study by beginners.
    (1) The book is self-contained, so that the reader does not need to refer to other books or literature.
    (2) To deepen the reader's understanding, exercises are provided at the end of each chapter with detailed solutions available online.
    (3) To promote the reader's intuitive understanding, the book presents as many concrete examples as possible.
    (4)
    Coffee Break’ columns introduce knowledge and know-how from the author's experience.

    Unsupervised learning will be discussed in a sequel.

    "

    Több

    Tartalomjegyzék:

    Part I Linear Classification.- Chapter 1 Basic Concepts of Pattern Recognition.- Chapter 2 Linear Discriminant Functions and their Learning.- Chapter 3 Learning based on Minimum Squared Error Criterion.- Chapter 4 Classifier Design.-Chapter 5 Feature Evaluation and Bayes Error.- Chapter 6 Transformation of Feature Space.- Part II Nonlinear Classification.- Chapter 7 Subspace Method.- Chapter 8 Generalized Linear Discriminant Functions.- Chapter 9 Potential Function Method.- Chapter 10 Support Vector Machines. Chapter 11 Kernel Methods.- Chapter 12 Neural Networks.- Part III Bayesian Unified Framework.- Chapter 13 Convolutional Neural Networks.- Chapter 14 Generalization of Learning Algorithms.- Chapter 15 Learning Algorithms and Bayes Decision Rule.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Ishii, Kenichiro; Ueda, Naonori; Maeda, Eisaku; Murase, Hiroshi

    31 060 Ft

    24 848 Ft

    20% %kedvezmény
    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Machine Learning Applications for Bioenergy Conversion

    Tippayawong, Nakorn; Onsree, Thossaporn; Moran, James

    48 811 Ft

    39 049 Ft

    20% %kedvezmény
    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    First-Order Schemata and Inductive Proof Analysis

    Leitsch, Alexander; Cerna, David Michael; Lolic, Anela

    71 001 Ft

    56 801 Ft

    20% %kedvezmény
    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Experimental and Computational Advances in Materials

    Ledwani, Lalita; Srivastava, Saurabh

    62 125 Ft

    49 700 Ft

    20% %kedvezmény
    Pattern Recognition and Machine Learning for Self-Study I: Supervised Learning

    Models in Statics for Engineers

    Vlase, Sorin; Marin, Marin; Öchsner, Andreas; Scutaru, Maria Luminita

    44 374 Ft

    35 499 Ft

    next