• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Numerical Linear Algebra for Applications in Statistics

    Numerical Linear Algebra for Applications in Statistics by Gentle, James E.;

    Sorozatcím: Statistics and Computing;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 184 Ft (21 128 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 437 Ft off)
      • Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)

    22 184 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1998
    • Kiadó Springer New York
    • Megjelenés dátuma 1998. augusztus 13.
    • Kötetek száma 1 pieces, Book

    • ISBN 9780387985428
    • Kötéstípus Keménykötés
    • Lásd még 9781461268420
    • Terjedelem221 oldal
    • Méret 235x155 mm
    • Súly 1140 g
    • Nyelv angol
    • Illusztrációk XIII, 221 p. Illustrations, black & white
    • 0

    Kategóriák

    Hosszú leírás:

    Numerical linear algebra is one of the most important subjects in the field of statistical computing. Statistical methods in many areas of application require computations with vectors and matrices. This book describes accurate and efficient computer algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors. Although the book is not tied to any particular software system, it describes and gives examples of the use of modern computer software for numerical linear algebra. An understanding of numerical linear algebra requires basic knowledge both of linear algebra and of how numerical data are stored and manipulated in the computer. The book begins with a discussion of the basics of numerical computations, and then describes the relevant properties of matrix inverses, matrix factorizations, matrix and vector norms, and other topics in linear algebra; hence, the book is essentially self- contained. The topics addressed in this bookconstitute the most important material for an introductory course in statistical computing, and should be covered in every such course. The book includes exercises and can be used as a text for a first course in statistical computing or as supplementary text for various courses that emphasize computations. James Gentle is University Professor of Computational Statistics at George Mason University. During a thirteen-year hiatus from academic work before joining George Mason, he was director of research and design at the world's largest independent producer of Fortran and C general-purpose scientific software libraries. These libraries implement many algorithms for numerical linear algebra. He is a Fellow of the American Statistical Association and member of the International Statistical Institute. He has held several national Linear algebra is one of the most imprortant mathematical and computational tools in the sciences. A knowledge of linear algebra is essential for research in statistics or the application of statistics. This book presents the aspects of numerical linear algebra that are important to statisticians.

    Több

    Tartalomjegyzék:

    1 Computer Storage and Manipulation of Data.- 1.1 Digital Representation of Numeric Data.- 1.2 Computer Operations on Numeric Data.- 1.3 Numerical Algorithms and Analysis.- Exercises.- 2 Basic Vector/Matrix Computations.- 2.1 Notation, Definitions, and Basic Properties.- 2.2 Computer Representations and Basic Operations.- Exercises.- 3 Solution of Linear Systems.- 3.1 Gaussian Elimination.- 3.2 Matrix Factorizations.- 3.3 Iterative Methods.- 3.4 Numerical Accuracy.- 3.5 Iterative Refinement.- 3.6 Updating a Solution.- 3.7 Overdetermined Systems; Least Squares.- 3.8 Other Computations for Linear Systems.- Exercises.- 4 Computation of Eigenvectors and Eigenvalues and the Singular Value Decomposition.- 4.1 Power Method.- 4.2 Jacobi Method.- 4.3 QR Method for Eigenanalysis.- 4.4 Singular Value Decomposition.- Exercises.- 5 Software for Numerical Linear Algebra.- 5.1 Fortran and C.- 5.2 Interactive Systems for Array Manipulation.- 5.3 High-Performance Software.- 5.4 Test Data.- Exercises.-6 Applications in Statistics.- 6.1 Fitting Linear Models with Data.- 6.2 Linear Models and Least Squares.- 6.3 Ill-Conditioning in Statistical Applications.- 6.4 Testing the Rank of a Matrix.- 6.5 Stochastic Processes.- Exercises.- Appendices.- A Notation and Definitions.- B Solutions and Hints for Selected Exercises.- Literature in Computational Statistics.- World Wide Web, News Groups, List Servers, and Bulletin Boards.- References.- Author Index.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Numerical Linear Algebra for Applications in Statistics

    Ambient Communications and Computer Systems: RACCCS 2019

    Hu, Yu-Chen; Tiwari, Shailesh; Trivedi, Munesh C.; Mishra, K. K.

    66 563 Ft

    53 250 Ft

    20% %kedvezmény
    Numerical Linear Algebra for Applications in Statistics

    Control Systems Benchmarks

    Maestre, José M.; Ocampo-Martinez, Carlos

    71 001 Ft

    56 801 Ft

    20% %kedvezmény
    Numerical Linear Algebra for Applications in Statistics

    Conformal Symmetry Breaking Operators for Differential Forms on Spheres

    Kobayashi, Toshiyuki; Kubo, Toshihisa; Pevzner, Michael

    15 528 Ft

    12 422 Ft

    20% %kedvezmény
    Numerical Linear Algebra for Applications in Statistics

    R for SAS and SPSS Users

    Muenchen, Robert A.

    75 438 Ft

    60 351 Ft

    Numerical Linear Algebra for Applications in Statistics

    R for SAS and SPSS Users

    Muenchen, Robert A.;

    24 864 Ft

    22 875 Ft

    next