• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

    Mobility Patterns, Big Data and Transport Analytics by Antoniou, Constantinos; Dimitriou, Loukas; Pereira, Francisco;

    Tools and Applications for Modeling

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 110.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        45 622 Ft (43 450 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 9 124 Ft off)
      • Kedvezményes ár 36 498 Ft (34 760 Ft + 5% áfa)

    45 622 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena.

    This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques.

    The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques.

    Több

    Tartalomjegyzék:

    1. Big Data and Transport Analytics: An Introduction Constantinos Antoniou, Loukas Dimitriou and Francisco Camara Pereira
    1 Introduction
    2 Book Structure
    Part I: Methodological
    2. Machine Learning Fundamentals
    Francisco Camara Pereira and Stanislav S. Borysov
    3. Using Semantic Signatures for Social Sensing in Urban Environments
    Krzysztof Janowicz, Grant McKenzie, Yingjie Hu, Rui Zhu and Song Gao
    4. Geographic Space as a Living Structure for Predicting Human Activities Using Big Data
    Bin Jiang and Zheng Ren
    5. Data Preparation
    Kristian Henrickson, Filipe Rodrigues and Francisco Camara Pereira
    6. Data Science and Data Visualization
    Michalis Xyntarakis and Constantinos Antoniou
    7. Model-Based Machine Learning for Transportation
    Inon Peled, Filipe Rodrigues and Francisco Camara Pereira
    8. Textual Data in Transportation Research: Techniques and Opportunities
    Aseem Kinra, Samaneh Beheshti Kashi, Francisco Camara Pereira, Francois Combes and Werner Rothengatter
    Part II: Applications
    9. Statewide Comparison of Origin-Destination Matrices Between California Travel Model and Twitter
    Jae Hyun Lee, Adam Davis, Elizabeth McBride and Konstadinos G. Goulias
    10. Transit Data Analytics for Planning, Monitoring, Control, and Information
    Haris N. Koutsopoulos, Zhenliang Ma, Peyman Noursalehi and Yiwen Zhu
    11. Data-Driven Traffic Simulation Models: Mobility Patterns Using Machine Learning Techniques
    Vasileia Papathanasopoulou, Constantinos Antoniou and Haris N. Koutsopoulos
    12. Big Data and Road Safety: A Comprehensive Review
    13. A Back-Engineering Approach to Explore Human Mobility Patterns Across Megacities Using Online Traffic Maps
    14. Pavement Patch Defects Detection and Classification Using Smartphones, Vibration Signals and Video Images
    Symeon E. Christodoulou, Charalambos Kyriakou and George Hadjidemetriou
    15. Collaborative Positioning for Urban Intelligent Transportation Systems (ITS) and Personal Mobility (PM): Challenges and Perspectives
    Vassilis Gikas, Guenther Retscher and Allison Kealy

    Több