• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Machine Learning and Its Applications to Healthcare

    Machine Learning and Its Applications to Healthcare by Pant, Millie; Deep, Kusum; Nagar, Atulya K.;

    Sorozatcím: Mathematics for Sustainable Developments;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 192.59
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        79 876 Ft (76 073 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 15 975 Ft off)
      • Kedvezményes ár 63 901 Ft (60 858 Ft + 5% áfa)

    79 876 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Springer Nature Singapore
    • Megjelenés dátuma 2026. február 7.

    • ISBN 9789819548309
    • Kötéstípus Keménykötés
    • Terjedelem476 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk X, 476 p. 202 illus., 170 illus. in color.
    • 0

    Kategóriák

    Hosszú leírás:

    This book offers a comprehensive collection of 36 research contributions on the transformative role of soft computing techniques such as fuzzy logic, neural networks, genetic algorithms, and hybrid methodologies in solving complex problems in healthcare. By aligning its themes with Sustainable Development Goals (SDG 3: Good Health and Wel-Being), the book offers a comprehensive analysis of how these technologies are being integrated into medical diagnosis, predictive modeling, disease classification, personalized medicine and healthcare management. Through an exploration of current trends, research advancements and practical implementations, the book demonstrates the immense potential of soft computing to improve healthcare outcomes. It features a wide array of applications, including diagnostic systems for diseases such as cancer, Alzheimer's and cardiovascular conditions, as well as personalized treatment recommendations, patient monitoring systems and medical image analysis. It is aimed at researchers, practitioners and healthcare professionals, seeking to explore and apply advanced computational techniques to the medical field, providing both theoretical insights and practical applications.

    Több

    Tartalomjegyzék:

    "

    Assessing Students Emotions in Learning Environment Integrating Deep Learning with Statistical Learning.- MediAI A Specialized Medical LLM for Accurate Diagnosis and Clinical Documentation.- Predicting Maternal Health Risks using Ensemble Model Multilayer Perceptron and PCA Features.- Performance Evaluation of Deep Learning Models using Transfer Learning on Ultrasound Images for Breast Cancer Detection.- Identification of Severity of Chronic Obstructive Pulmonary Disease COPD using Machine Learning Models based on Spirometry Data.- Real time Healthcare Environment Monitoring Through Deep Learning A Multi Modal Sensor Fusion Implementation.- EMG Signal Classification in Lower Limbs using Machine Learning Techniques.- Real time Virtual Meeting Architecture for Deaf People Audio Transcription Noise Processing and Sign Language Translation using LSTM Neural Networks.- Predictive Modeling of Sepsis Risk Leveraging Clinical Parameters for Early Detection and Intervention.- A Targeted Study of Lightweight Machine Learning Techniques for Cardiac Arrhythmia Risk Prediction.- Development of Smart ECG Monitoring System using IoT and ML.- AI Driven Pneumonia Diagnosis Harnessing Custom CNNs for Chest X ray Analysis.- A Serverless Cloud Approach to a Scalable Geospatial Healthcare Web based Application.- Ensemble Learning Inspired Model for Medical Image Segmentation.- A Non local Weighted Optical Flow based CNN Model for Smoke Detection using Static and Dynamic Features.- Behavioral Analysis Techniques for Early Detection of Ransomware.- Machine Learning based Diabetic Prediction on Indigenous Shakti Processor for Edge Health Monitoring.- Skin Lesion Segmentation using UNet based Architectures.- Bridging Molecular Features and Solubility Towards Drug Design A Machine Learning Framework for Solubility Prediction Ensemble Model Based Fall Detection on Elderly Adult using CNN BILSTM.- AI based Automated ICD Coding for Clinical Texts and Records A Systematic Literature Review.- A Hybrid CNN LSTM Model for Sudden Cardiac Death Prediction.- Hybrid Deep Learning Model for Fall Detection in Healthy Elderly using CNN BiLSTM CNBiLS.- Fake News Detection using Machine Learning and Sentiment Analysis Integrated in a Flask Web Application.- Early stage Detection for Alzheimer Disease using Machine Learning and Deep Learning Algorithm.- Advanced Machine Learning Framework for Early Detection of Cardiac Disease using Statistical Analysis and Feature Engineering.- Optimum Hyperbolic Tangent Function for MRI Enhancement.- Towards a More Competent Healthcare System A Methodological Approach for Quantizing Reliable Detection of Concealed Depression using Ensemble Learning.- Diabetes Risk Progression and Personalized Recommendations using Machine Learning.- Alzheimers Disease Prediction using Convolutional Neural Network.- Hybrid Generative AI Framework for Medical Text Summarization Enhancing Precision and Relevance in Healthcare Decision Making.- Multi Modal Hybrid Model for Depression Detection on Social Media and Clinical Datasets.- Design of an Improved Method for PET Scan Analysis using ConvTransformers and SHAP Guided Ensembles for Oral Cancer Diagnosis.- Transforming Healthcare with AI A Comprehensive Review of Innovations in Tropical Disease Management and Cancer Therapy.- Brain Tumor Classification using a CNN Driven Deep Learning Framework Leveraging MRI Imaging.- Edge Detection in Medical imaging via Clustering A Quantum Computing Approach for Lung Carcinoma and Brain Tumor.- Alzheimer Disease Classification using Transfer Learning of Pre trained Model.- Human centric Medical Summarization with Hybrid Generative AI.- Predictive Analysis of Drug Impact using GNN.- Evaluation of Side Effects Associated with Covid 19 Vaccines india.

    "

    Több