Lungs Segmentation and Nodule Detection using Machine Learning
Medical Image Segmentation and Classification using Machine Learning
-
5% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 68.00
-
28 203 Ft (26 860 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 5% (cc. 1 410 Ft off)
- Kedvezményes ár 26 793 Ft (25 517 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
28 203 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó VDM Verlag Dr. Müller
- Megjelenés dátuma 2011. január 1.
- Kötetek száma .
- ISBN 9783639342802
- Kötéstípus Puhakötés
- Terjedelem164 oldal
- Nyelv angol 0
Kategóriák
Hosszú leírás:
Segmentation of images has become an important and effective tool for many technological applications like lungs segmentation from CT scan images. The objective of this book is to develop a new fully automated system that segment the lungs part from CT scan images and detect nodules automatically. A fully automatic un-supervised strategy has been developed for the segmentation of lungs. Technique employs a novel background removal operator based on histogram of the image to remove the background very intelligently and automatically. The methodology utilizes spatial Fuzzy C-Mean (FCM) clustering to ensure robustness against the noise. Also a fuzzy histogram based image filtering technique has been used to remove the noise, which preserves the image details for low as well as highly corrupted images. Segments have been validated by using different cluster validity functions. The proposed technique finds out optimal and dynamic threshold by using fuzzy entropy and genetic algorithms. A directional approach has been used to extract the Region of Interests (ROIs) and FCM have been used to classify ROIs that contain nodule.
Több
Patch Testing and Prick Testing: A Practical Guide Official Publication of the ICDRG
Patch Testing and Prick Testing: A Practical Guide Official Publication of the ICDRG