• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Kunst in der Bibliothek: Zur Geschichte der Kunstbibliothek und ihrer Sammlungen Staatliche Museen zu Berlin, Preußischer Kulturbesitz

    Kunst in der Bibliothek by Evers, Bernd;

    Zur Geschichte der Kunstbibliothek und ihrer Sammlungen Staatliche Museen zu Berlin, Preußischer Kulturbesitz

    Sorozatcím: Adaptive and Learning Systems for Signal Processing, Communications and Control Series;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 45.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        21 498 Ft (20 475 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 150 Ft off)
      • Kedvezményes ár 19 349 Ft (18 428 Ft + 5% áfa)

    21 498 Ft

    Beszerezhetőség

    A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Wiley-Vch
    • Megjelenés dátuma 1994. július 14.

    • ISBN 9783050026497
    • Kötéstípus Keménykötés
    • Terjedelem568 oldal
    • Méret 110x92x17 mm
    • Súly 2517 g
    • Nyelv német
    • 0

    Kategóriák

    Rövid leírás:

    Online learning from a signal processing perspective

    There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.

    • Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm

    • Presents a powerful model-selection method called maximum marginal likelihood

    • Addresses the principal bottleneck of kernel adaptive filters?their growing structure

    • Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site

    • Concludes each chapter with a summary of the state of the art and potential future directions for original research

    Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.

    Több

    Hosszú leírás:

    Reproducing kernel Hilbert spaces is a topic of great current interest for applications in signal processing, communications, and controls The first book to explain real-time learning algorithms in reproducing kernel Hilbert spaces, On-Line Kernel Learning includes simulations that illustrate the ideas discussed and demonstrate their applicability as well as MATLAB codes for simulations. This book is ideal for professionals and graduate students interested in nonlinear adaptive systems for on-line applications.

    Online learning from a signal processing perspective

    There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.

    • Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm

    • Presents a powerful model-selection method called maximum marginal likelihood

    • Addresses the principal bottleneck of kernel adaptive filters?their growing structure

    • Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site

    • Concludes each chapter with a summary of the state of the art and potential future directions for original research

    Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.

    Több