• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Knots and Primes: An Introduction to Arithmetic Topology

    Knots and Primes by Morishita, Masanori;

    An Introduction to Arithmetic Topology

    Sorozatcím: Universitext;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 184 Ft (21 128 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 437 Ft off)
      • Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)

    22 184 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2
    • Kiadó Springer Japan
    • Megjelenés dátuma 2024. május 28.
    • Kötetek száma 1 pieces, Book

    • ISBN 9789819992546
    • Kötéstípus Puhakötés
    • Terjedelem259 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk XV, 259 p. 78 illus. Illustrations, black & white
    • 565

    Kategóriák

    Hosszú leírás:

    This book provides a foundation for arithmetic topology, a new branch of mathematics that investigates the analogies between the topology of knots, 3-manifolds, and the arithmetic of number fields. Arithmetic topology is now becoming a powerful guiding principle and driving force to obtain parallel results and new insights between 3-dimensional geometry and number theory.

    After an informative introduction to Gauss' work, in which arithmetic topology originated, the text reviews a background from both topology and number theory. The analogy between knots in 3-manifolds and primes in number rings, the founding principle of the subject, is based on the étale topological interpretation of primes and number rings. On the basis of this principle, the text explores systematically intimate analogies and parallel results of various concepts and theories between 3-dimensional topology and number theory. The presentation of these analogies begins at an elementary level, gradually building to advanced theories in later chapters. Many results presented here are new and original.

    References are clearly provided if necessary, and many examples and illustrations are included. Some useful problems are also given for future research. All these components make the book useful for graduate students and researchers in number theory, low dimensional topology, and geometry.

    This second edition is a corrected and enlarged version of the original one. Misprints and mistakes in the first edition are corrected, references are updated, and some expositions are improved. Because of the remarkable developments in arithmetic topology after the publication of the first edition, the present edition includes two new chapters. One is concerned with idelic class field theory for 3-manifolds and number fields. The other deals with topological and arithmetic Dijkgraaf–Witten theory, which supports a new bridge between arithmetic topology and mathematical physics.

    Több

    Tartalomjegyzék:

    Chapter 1. Introduction.- Chapter 2. Preliminaries - Fundamental Groups and Galois Groups.-Chapter 3. Knots and Primes, 3-Manifolds and Number Rings.- Chapter 4. Linking Numbers and Legendre Symbols.- Chapter 5. Decompositions of Knots and Primes.- Chapter 6. Homology Groups and Ideal Class Groups I – Genus Theory.- Chapter 7. Idelic Class Field Theory for 3-Manifolds and Number Fields.- Chapter 8. Link Groups and Galois Groups with Restricted Ramification.- Chapter 9. Milnor Invariants and Multiple Power Residue Symbols.- Chapter 10. Alexander Modules and Iwasawa Modules.- Chapter 11. Homology Groups and Ideal Class Groups II – Higher Order Genus Theory.- Chapter 12. Homology Groups and Ideal Class Groups III – Asymptotic Formulas.- Chapter 13. Torsions and the Iwasawa Main Conjecture.- Chapter 14. Moduli Spaces of Representations of Knot and Prime Groups.- Chapter 15. Deformations of Hyperbolic Structures and of p-Adic Ordinary Modular Forms.- Chapter 16. Dijkgraaf–Witten Theory for 3-Manifolds and Number Rings.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Knots and Primes: An Introduction to Arithmetic Topology

    AI for Scientific Discovery

    Hastings, Janna;

    11 461 Ft

    9 169 Ft

    Knots and Primes: An Introduction to Arithmetic Topology

    RETRATAMENTO ENDODÔNTICO

    Agarwal, Shashank; Kabra, Pooja; Pandey, Lakshmi;

    25 258 Ft

    23 995 Ft

    Knots and Primes: An Introduction to Arithmetic Topology

    I SOCIAL MEDIA E LA DIFESA DELLE QUESTIONI PUBBLICHE IN NIGERIA: DE

    IORLAHA, Paul Tersue; Iorlaha, Donald Torngu; Kutim, Doom Grace;

    18 207 Ft

    17 297 Ft

    Knots and Primes: An Introduction to Arithmetic Topology

    Moomin, Where Are You?

    Jansson, Tove

    4 294 Ft

    3 650 Ft

    Knots and Primes: An Introduction to Arithmetic Topology

    The Horus Heresy - Siege of Terra - Sammelband 03

    French, John; Wraight, Chris;

    10 368 Ft

    9 850 Ft

    next