• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Hydrological Insights: Synergizing Groundwater Models, Remote Sensing, and AI for Water Sustainability

    Hydrological Insights by Hashemi, Hossein; Kumar, Amit; Kumar, Krishna;

    Synergizing Groundwater Models, Remote Sensing, and AI for Water Sustainability

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 163.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        68 014 Ft (64 776 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 13 603 Ft off)
      • Kedvezményes ár 54 412 Ft (51 821 Ft + 5% áfa)

    68 014 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Elsevier Science
    • Megjelenés dátuma 2025. december 1.

    • ISBN 9780443363948
    • Kötéstípus Puhakötés
    • Terjedelem320 oldal
    • Méret 276x216 mm
    • Súly 450 g
    • Nyelv angol
    • 700

    Kategóriák

    Hosszú leírás:

    Hydrological Insights: Synergizing Groundwater Models, Remote Sensing, and AI for Water Sustainability offers an in-depth exploration of hydrological modeling and its cutting-edge advancements, presented across six comprehensive sections. Part I establishes the foundational principles and methodologies of hydrological modeling, while Part II delves into sophisticated techniques and tools that enhance the accuracy and efficiency of hydrological studies. Part III highlights the powerful integration of remote sensing and artificial intelligence, showcasing how these technologies revolutionize modern hydrological practices.

    Part IV focuses on environmental impact assessment and management strategies, outlining effective methods for sustainable water resource management. Part V covers the latest advancements in remote sensing and machine learning, emphasizing their pivotal role in contemporary hydrology. Finally, Part VI presents real-world case studies and future directions, offering practical insights and forward-looking perspectives. With meticulously crafted chapters that combine theoretical foundations with practical applications, this book is an essential resource for students, researchers, and professionals seeking to advance their understanding of hydrology through the integration of remote sensing and AI.

    Több

    Tartalomjegyzék:

    Part I: Foundations of Hydrological Modeling
    1. Introduction to Data-Driven Groundwater Modeling: Methods, Applications & Challenges
    2. InSAR-Based Estimation of Head and Storage Changes: Numerical Models and Data Driven Techniques
    3. Surfacewater Flow as a Mitigation Measure for Land Subsidence Mitigation in Rural and Urban Areas
    4. Hydro-Meteorological Droughts: Patterns, Trends, and the Role of Accumulation Periods on Groundwater Condition

    Part II: Advanced Techniques in Hydrological Studies
    5. Automated Hydrological Variable Estimation: Novel Approaches and Optimization Algorithms
    6. Spatiotemporal Variability of Hydrometeorological Parametrs: Insights from River Basin Analysis
    7. Monitoring Carbon Exchange in Wetlands and Peatlands Using InSAR-Based Methods
    8. Impact of Drinking and Sanitary Water Separation on Drinking Water Quality: Groundwater Quality Mapping

    Part III: Integration of Remote Sensing and Artificial Intelligence in Hydrology
    9. InSAR-AI-Based Approach for Groundwater Level Prediction in Arid Regions
    10. Spatiotemporal Variation of Environmental Hazards: Remote Sensing and AI Applications
    11. Detecting Changes in Global Satellite-Based Hydrological Observations using AI Techniques
    12. Satellite Monitoring of Infrastructure using Interferometric Synthetic Aperture Radar (InSAR)

    Part IV: Environmental Impact Assessment and Management Strategies
    13. Quantitative and Qualitative Assessment of Streamflow Variation: Climate vs. Human Impact
    14. Assessing Contaminated Groundwater Sites in Industrial Areas with Limited Data Availability
    15. Flood Spreading Project Suitability Mapping: Water Resources Management using Machine Learning Algorithms

    Part V: Advances in Remote Sensing and Machine Learning
    16. Advanced Machine Learning Algorithms for Assessing Groundwater Potential using Remote Sensing-Derived Data
    17. Extreme Gradient Boosting and Random Forest Algorithms for Assessing Groundwater Spring Potential using DEM-Derived Factors
    18. Remote Sensing Techniques and Machine Learning Algorithms in Groundwater Vulnerability Mapping

    Part VI: Case Studies and Future Directions
    19. Evaluation of Weather Radar Systems for Operational Use in Hydrological Studies
    20. Towards Intelligent Assessment of Groundwater Resources: Trends, Challenges, and Future Directions

    Több