Hybrid Machine Intelligence for Medical Image Analysis
Sorozatcím: Studies in Computational Intelligence; 841;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 106.99
-
44 374 Ft (42 261 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 8 875 Ft off)
- Kedvezményes ár 35 499 Ft (33 809 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
44 374 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2020
- Kiadó Springer Nature Singapore
- Megjelenés dátuma 2020. augusztus 21.
- Kötetek száma 1 pieces, Book
- ISBN 9789811389320
- Kötéstípus Puhakötés
- Lásd még 9789811389290
- Terjedelem293 oldal
- Méret 235x155 mm
- Súly 480 g
- Nyelv angol
- Illusztrációk XVI, 293 p. 179 illus., 114 illus. in color. Illustrations, black & white 80
Kategóriák
Hosszú leírás:
The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
TöbbTartalomjegyzék:
Preface.- Introduction.- Brain Tumor Segmentation from T1 Weighted MRI Images Using Rough Set Reduct and Quantum Inspired Particle Swarm Optimization.- Automated Region of Interest detection of Magnetic Resonance (MR) images by Center of Gravity (CoG).- Brain tumors detection through low level features detection and rotation estimation.- Automatic MRI Image Segmentation for Brain tumors detection using Multilevel Sigmoid Activation (MUSIG) function.- Automatic Segmentation of pulmonary nodules in CT Images for Lung Cancer detection using self-supervised Neural Network Architecture.- A Hierarchical Fused Fuzzy Deep Neural Network for MRI Image Segmentation and Brain Tumor Classification.- Computer Aided Detection of Mammographic Lesions using Convolutional Neural Network (CNN).- Conclusion.
Több
Quality, Reliability, Infocom Technology and Industrial Technology Management
100 784 Ft
92 722 Ft