How to Build a Brain
A Neural Architecture for Biological Cognition
Sorozatcím: Oxford Series on Cognitive Models and Architectures;
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 157.50
-
75 245 Ft (71 662 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 7 525 Ft off)
- Kedvezményes ár 67 721 Ft (64 496 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
75 245 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó OUP USA
- Megjelenés dátuma 2013. június 27.
- ISBN 9780199794546
- Kötéstípus Keménykötés
- Terjedelem480 oldal
- Méret 183x257x38 mm
- Súly 1165 g
- Nyelv angol 0
Kategóriák
Rövid leírás:
Chris Eliasmith presents a new approach to understanding the neural implementation of cognition in a way that is centrally driven by biological considerations. According to the Semantic Pointer Hypothesis, higher-level cognitive functions in biological systems are made possible by semantic pointers.
TöbbHosszú leírás:
In this book, Chris Eliasmith presents a new approach to understanding the neural implementation of cognition in a way that is centrally driven by biological considerations. He calls the general architecture that results from the application of this approach the Semantic Pointer Architecture (SPA), based on the Semantic Pointer Hypothesis. According to this hypothesis, higher-level cognitive functions in biological systems are made possible by semantic pointers. These pointers are neural representations that carry partial semantic content and can be built up into the complex representational structures necessary to support cognition. The SPA architecture demonstrates how neural systems generate, compose, and control the flow of semantics pointers. Eliasmith describes in detail the theory and empirical evidence supporting the SPA, and presents several examples of its application to cognitive modeling, covering the generation of semantic pointers from visual data, the application of semantic pointers for motor control, and most important, the use of semantic pointers for representation of language-like structures, cognitive control, syntactic generalization, learning of new cognitive strategies, and language-based reasoning. He agues that the SPA provides an alternative to the dominant paradigms in cognitive science, including symbolicism, connectionism, and dynamicism.
TöbbTartalomjegyzék:
Contents
1 The science of cognition
1.1 The last 50 years
1.2 How we got here
1.3 Where we are
1.4 Questions and answers
1.5 Nengo: An introduction
Part I: How to build a brain
2 An introduction to brain building
2.1 Brain parts
2.2 A framework for building a brain
2.2.1 Representation
2.2.2 Transformation
2.2.3 Dynamics
2.2.4 The three principles
2.3 Levels
2.4 Nengo: Neural representation
3 Biological cognition - Semantics
3.1 The semantic pointer hypothesis
3.2 What is a semantic pointer?
3.3 Semantics: An overview
3.4 Shallow semantics
3.5 Deep semantics for perception
3.6 Deep semantics for action
3.7 The semantics of perception and action
3.8 Nengo: Neural computations
4 Biological cognition - Syntax
4.1 Structured representations
4.2 Binding without neurons
4.3 Binding with neurons.
4.4 Manipulating structured representations
4.5 Learning structural manipulations
4.6 Clean-up memory and scaling
4.7 Example: Fluid intelligence
4.8 Deep semantics for cognition
4.9 Nengo: Structured representations in neurons
5 Biological cognition - Control
5.1 The flow of information
5.2 The basal ganglia
5.3 Basal ganglia, cortex, and thalamus
5.4 Example: Fixed sequences of actions
5.5 Attention and the routing of information
5.6 Example: Flexible sequences of actions
5.7 Timing and control
5.8 Example: The Tower of Hanoi
5.9 Nengo: Question answering
6 Biological cognition - Memory and learning
6.1 Extending cognition through time
6.2 Working memory
6.3 Example: Serial list memory
6.4 Biological learning
6.5 Example: Learning new actions
6.6 Example: Learning new syntactic manipulations
6.7 Nengo: Learning
7 The Semantic Pointer Architecture (SPA)
7.1 A summary of the SPA
7.2 A SPA unified network
7.3 Tasks
7.3.1 Recognition
7.3.2 Copy drawing
7.3.3 Reinforcement learning
7.3.4 Serial working memory
7.3.5 Counting
7.3.6 Question answering
7.3.7 Rapid variable creation
7.3.8 Fluid reasoning
7.3.9 Discussion
7.4 A unified view: Symbols and probabilities
7.5 Nengo: Advanced modeling methods
Part II Is that how you build a brain?
8 Evaluating cognitive theories 341
8.1 Introduction
8.2 Core cognitive criteria (CCC)
8.2.1 Representational structure
8.2.1.1 Systematicity
8.2.1.2 Compositionality
8.2.1.3 Productivity
8.2.1.4 The massive binding problem
8.2.2 Performance concerns
8.2.2.1 Syntactic generalization
8.2.2.2 Robustness
8.2.2.3 Adaptability
8.2.2.4 Memory
8.2.2.5 Scalability
8.2.3 Scientific merit
8.2.3.1 Triangulation (contact with more sources of data)
8.2.3.2 Compactness
8.3 Conclusion
8.4 Nengo Bonus: How to build a brain - a practical guide
9 Theories of cognition
9.1 The state of the art
9.1.1 ACT-R
9.1.2 Synchrony-based approaches
9.1.3 Neural blackboard architecture (NBA)
9.1.4 The integrated connectionist/symbolic architecture (ICS)
9.1.5 Leabra
9.1.6 Dynamic field theory (DFT)
9.2 An evaluation
9.2.1 Representational structure
9.2.2 Performance concerns
9.2.3 Scientific merit
9.2.4 Summary
9.3 The same...
9.4 ...but different
9.5 The SPA versus the SOA
10 Consequences and challenges
10.1 Representation
10.2 Concepts
10.3 Inference
10.4 Dynamics
10.5 Challenges
10.6 Conclusion
A Mathematical notation and overview
A.1 Vectors
A.2 Vector spaces
A.3 The dot product
A.4 Basis of a vector space
A.5 Linear transformations on vectors
A.6 Time derivatives for dynamics
B Mathematical derivations for the NEF
B.1 Representation
B.1.1 Encoding
B.1.2 Decoding
B.2 Transformation
B.3 Dynamics
C Further details on deep semantic models
C.1 The perceptual model
C.2 The motor model
D Mathematical derivations for the SPA
D.1 Binding and unbinding HRRs
D.2 Learning high-level transformations
D.3 Ordinal serial encoding model
D.4 Spike-timing dependent plasticity
D.5 Number of neurons for representing structure
E SPA model details
E.1 Tower of Hanoi
Bibliography
Index