Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

Hands-On Machine Learning with Scikit-Learn and TensorFlow

Concepts, Tools, and Techniques to Build Intelligent Systems
 
Kiadás sorszáma: 1
Kiadó: O'Reilly Media
Megjelenés dátuma:
Kötetek száma: Print PDF
 
Normál ár:

Kiadói listaár:
GBP 35.50
Becsült forint ár:
14 649 Ft (13 951 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

13 184 (12 556 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 1 465 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
 
 
 
A termék adatai:

ISBN13:9781491962299
ISBN10:1491962291
Kötéstípus:Puhakötés
Terjedelem:574 oldal
Méret:233x177 mm
Súly:986 g
Nyelv:angol
1409
Témakör:
Hosszú leírás:

Graphics in this book are printed in black and white.

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.

By using concrete examples, minimal theory, and two production-ready Python frameworks&&&8212;scikit-learn and TensorFlow&&&8212;author Aur&&&233;lien G&&&233;ron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You&&&8217;ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you&&&8217;ve learned, all you need is programming experience to get started.

  • Explore the machine learning landscape, particularly neural nets
  • Use scikit-learn to track an example machine-learning project end-to-end
  • Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
  • Use the TensorFlow library to build and train neural nets
  • Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
  • Learn techniques for training and scaling deep neural nets
  • Apply practical code examples without acquiring excessive machine learning theory or algorithm details