Etiology and Morphogenesis of Congenital Heart Disease
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 115.00
-
54 941 Ft (52 325 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 5 494 Ft off)
- Kedvezményes ár 49 447 Ft (47 093 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
54 941 Ft
Beszerezhetőség
A kiadónál véglegesen elfogyott, nem rendelhető. Érdemes újra keresni a címmel, hátha van újabb kiadás.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Blackwell Publishers (Wiley)
- Megjelenés dátuma 2000. október 20.
- ISBN 9780879934477
- Kötéstípus Keménykötés
- Terjedelem397 oldal
- Méret 250x150x15 mm
- Súly 666 g
- Nyelv angol 0
Kategóriák
Rövid leírás:
This book discusses past and present research on the etiology and morphogenesis of congenital heart disease, from the molecular level of genotype to the outward physical manifestation of the patient's symptoms.
TöbbHosszú leírás:
This book discusses past and present research on the etiology and morphogenesis of congenital heart disease, from the molecular level of genotype to the outward physical manifestation of the patient's symptoms. In eight main sections and 67 chapters, the genetic, symmetry and molecular interaction of the early stages of heart formation are described: structural formation and external factors affecting form and function are explored and specific syndromes are analyzed.
This book discusses past and present research on the etiology and morphogenesis of congenital heart disease, from the molecular level of genotype to the outward physical manifestation of the patient''s symptoms. In eight main sections and 67 chapters, the genetics, symmetry, and molecular interaction of the early stages of heart formations are described; structural formation and external factors affecting form and function are explored, and specific syndromes are analyzed.
Fundamental principles of the earliest stages of cardiovasculogenesis are being clarified at the molecular/cellular level, while advances in precise genotypic diagnosis, combined with better phenotypic assessment, are leading to conceptual changes in the management of congenital heart disease. Although much remains to be learned about genotypic-phenotypic correlations, it is clear that the clinical implications of such understandings are bound to have deep and far-reaching benefits.
Cardiologists and pediatric cardiologists, cardiovascular researchers, human geneticists, molecular biologists, and pathologists will all find their understanding of congenital heart disease increased by this extensive, well-written examination.
TöbbTartalomjegyzék:
Preface.
Historical Overview: Twenty Years Progress: Understanding the Heart of a Child.
C.A. Neil.
Section I.
1. Overview: Axes, Situs and the Vertebrate Body Plan.
R.J. Yost.
2. Motor Proteins and the Development of Left-Right Asymmetry.
D. Supp, S.S. Potter, J. McGrath, M. Brueckner.
3. Expression of the inv Gene During Development and Intracellular Localization of the inv Protein.
T. Yokoyama, Y. Shirayoshi, T. Murakami, N. Nakatsuji.
4. Molecular Basis of Left-Right Asymmetry: Role of Lefty Genes and Their Transcriptional Regulation.
H. Hamada, C. Meno, Y. Saijoh, R. Sakuma, K. Yashiro, H. Adachi.
5. Search for the Mechanisms of Nitrous Oxide Induced Situs Inversus.
M. Fujinaga.
6. Left, Left, Left-Right-Left: The Genetics of Human Laterality Malformations.
B. Casey.
7. Positional Cloning of the Inversion Breakpoints of inv(11)(q13,q25) Found in a Patient with Heterotaxy.
A. Iida et al..
8. Left-Right Asymmetry Regulation and Heart Looping: The Expression Pattern of the Extracellular Matrix Protein, Flectin, During Early Heart Development in the Mouse Embryo .
T. Tsuda, K. Linask.
Section II.
9. Overview: Molecular Genetics of Congenital Heart Disease.
P.D. Grossfeld, K. Chien.
10. Analysis of the Cardiogenic Functions of NK-2 Class Homeobox Genes Using a Cross-Species Cardiac Rescue Assay in Drosophila.
G. Ranganayakulu, D.A. Elliott, R.P. Harvey, E.N. Olson.
11. Developmental Stage-Specific Transcriptional Regulation of Human Cardiac Homeobox Gene CSXI.
T. Mizuno, I. Shiojima, I. Komuro.
12. Functional Analysis of the Csc/Nkx2.5 Homeobox Gene in Murine Cardiac Development.
N. Tanaka et al..
13. Identification of Upstream Regulatory Regions in the Murine Tinman Homologue, Nkx2-5.
J.M. Reecy, X. Li, M. Yamada, F.J. Demayo, R.J. Schwartz.
14. Role of FGF1 in Specification of Mesoderm to Cardiac Muscle Lineage.
M. Okada et al..
15. Increased the Expression of Cardiotrophin-1 in the Dilated Cardiac Myocytes.
M. Tatsuguchi et al.
Section III..
16. Overview: Formation of the Primary Heart Tube.
R.R. Markwald, T. Nakaoka, C.H. Mjaatvedt.
17. Segmental Heart Development of the hdf/Versican Gene.
R.R. Markwald, et al.
18. A Role of rae28, a Member of the Polycomb Group of Genes in Cardiac Morphogenesis.
Y. Takihara, M. Shirai, D. Tomotsune, K. Shimada.
19. Control of Mouse Cardiac Morphogenesis and Myogenesis by jumonji.
T. Takeuchi.
20. Myocardialization: A Novel Mechanism of Cardiac Septation.
A.F.M. Moorman et al..
21. Developmentally Regulated Neonatal Skeletal Myosin Heavy Chain is Expressed in Myocardium and Cardiac Conduction Tissue in the Developing Chick Heart.
S. Machida et al..
22. Role of Transforming Growth Factor-beta3 During the Formation of Endocardial Cushion Tissue in Chick Heart Development.
Y. Nakajima, T. Yamagishi, H. Nakamura, V. Mironov, E.L. Krug, R.R. Markwald.
23. Bone Morphogenetic Protein-2 (BMP-2) Expression in Chick Heart Development: Possible Synergistic Effect with Transforming Growth Factor-beta3.
T. Yamagishi, Y. Nakajima, K. Miyazono, T.K. Sampath, H. Nakamura.
Section IV.
24. Overview: Extracellular Matrix: Nature vs. Nurture in Cardiac Development.
T. Borg.
25. Adhesion-Mediated Morphoregulatory Mechanisms of Early Cardiogenesis.
K.K. Linask.
26. The Role of the Extracellular Proteases in Cardiac Development.
T.K. Borg, S. Baer, T. Burnside, W. Carver.
27. The Role of NFATc in Semilunar Valve Development.
B. Zhou, A. Ranger, L. Glimcher, H.S. Baldwin.
28. Cell-Cell and Cell-Matrix Adhesions During Formation and Arrangement of Developing Cardiac Myofibrils.
I. Shiraishi, T. Takamatsu, Z. Onouchi, T.K. Borg.
29. Effects of Bis-diamine on Cardiovascular Development in an Early Rat Embryo:.
In Vivo and In Vitro Morphological Analyses.
M. Nakagawa et al.
30. Possible Roles of the Tenascin Family in the Early Heart Development.
K. Imanaka-Yoshida, T. Sakakura.
Section V..
31. Overview: Cardiac Morphogenesis: Outflowtract, Aortic Arch and Conduction System.
A. Gittenberger-de Groot.
32. Overview: Understanding CHD Through Dissection of Segmental Cardiac Molecular Pathways.
D. Srivastava.
33. An Adenoviral Gene Delivery System Reveals Mechanisms of Cardiac Outflow Tract Morphogenesis.
M. Watanabe, S.A. Fisher.
34. Novel Mechanisms Used by Cardiac Neural Crest Cells in Supporting Structural and Functional Heart Development.
M.L. Kirby, M. Farrell, K. Waldo, T.L. Creazzo, R.E. Godt, L. Leatherbury.
35. Effects of Retinoic Acid and Bis-diamine with Expression of 90 kD Heat Shock Protein and Neurotrophin-3 Genes in Chicks.
H. Sumioda, T. Kumazaki, H. Nakamura.
36. Alterations in RAR and TGF-beta Expression in Developing Mouse Hearts Exposed to Retinoic Acid.
S. Miyagawa-Tomita, K. Komatsu, M. Morishima, M. Nakazawa.
37. Essential Role of the Forkhead (Winged Helix) Gene MFH-1 in the Aortic Arch Formation.
N. Miura et al.
38. A Dual Pathway to the Heart Links Neural Crest to In- and Outflow Tract Septation and to Differentiation of the Conduction System.
R.E. Poelmann, A.C. Gittenberger-de Groot.
39. Molecular Induction of the Cardiac conduction System.
T. Mikawa, R.G. Gourdie, J. Hyer, Y. Wei, K. Takebayashi-Suzuki.
40. Adenoviral and Retroviral Gene Targeting of the Cardiac Conduction System.
W. Litchenberg, C. Gang, S.C. Klatt, T. Mikawa, R.P. Thompson, R.G. Gourdie.
41. Epicardial Derived Cells (EPDC) Participate in Formation of Cardiac Valves and Coronary Vascular Wall and Initiate Purkinje Fiber Differentiation.
A.C. Gittenberger-de Groot, F.M. Mark-Paul, P. Vrancken, R.E. Poelmann.
42. Origin and Fate of Cardiac Conduction Tissue.
R.P. Thompson, P. Soles-Rosenthal, G. Cheng.
43. The Form and function of the Developing Cardiac Conduction System.
M. Watanabae, D.S. Rosenbaum, I. Libbus, E.T. Chuck.
44. Accelerated Maturation of the Ductus Arteriosus with Retinoic Acid in the Fetal Rat.
K. Momma.
45. Increased SM2 Myosin Heavy-Chain mRNA Expression Just Before Birth and Induction of Apoptosis After Birth Are Observed in Longitudinally Oriented Smooth Muscle Cells in the Inner Media of the Ductus Arteriosus.
S. Imamura, T. Nishikawa, E. Hiratsuka, A. Takao, R. Matsuoka.
Section VI.
46. Overview: Function, Biomechanics, and Control of Developing Cardiovascular Systems.
B.B. Keller.
47. Magnetic Resonance Imaging and Analysis of the Embryonic and Fetal Heart.
B.R. Smith.
48. The Similarity of Ventricular Function and Morphology of the Embryonic Heart of Endothelin-1 Knock-Out and Retinoic Acid Treated Mice.
M. Nakazawa et al.
49. In Utero High-Frequency (40 MHz) Echocardiographic Analysis of Murine.
Embryonic Heart Development.
M. Artman, S. Srinivasan, C. Phoon, O. Aristizabal, D.H. Turnbull.
50. Calcium Regulation in the Developing Heart.
M. Artman, P.S. Haddock, W.A. Coetzee.
51. Ca2+-Induced Ca2+ Release in Developing Rabbit Heart.
G.T. Wetzel, M.J. Bransby, F. Chen, J.I. Goldhaber.
52. Developmental Changes in Contractile System of the Vaxcular Smooth Muscle.
Cells and the Effect of Acidosis.
T. Nakanishi, H. Gu.
53. Mechanisms of HERG Gating in the Heart.
G.A. Robertson, J. Wang, M.C. Trudeau.
54. Hypoxic Induction of Adrenomedullin in Human Umbilical Vein Endothelial Cells.
T. Ogita, T. Nakaoka, Y. Kira, R. Matsuoka, T. Fujita.
Section VII.
55. Overview: Syndromes, Developmental Fields and Human Congenital Cardiovascular Malformations.
J. Opitz.
56. Human Cardiac Development.
D.I. Wilson et al..
57. Role of the bHLH Transcription Factor, dHAND, in Cranial/Cardiac Neural Crest Development.
H. Yamagishi, D. Srivastava.
58. Human Genetic Analysis of Cardiac Proliferation and Differentiation.
M. Casey et al.
59. Blocks of Duplicated Sequence Define the Endpoints of DGS/VCFS-22q11.2 Deletions.
B.S. Emanuel et al.
60. Genotype-Phenotype Correlations in Del 22q11.2 Syndrome and Long QT Syndrome.
R. Matsuoka et al..
61. Combined Missence Mutations of the Mitochondrial DNA Gene, beta-Cardiac Myosin.
Heavy-Chain Gene and Cardiac Troponin T Gene in Familial Hypertrophic Cardiomyopathy.
S. Arai et al..
62. Efficient Finding of Disease Genes by Genomic Sequencing of Targeted Chromosomal Regions.
N. Shimizu.
63. Genetics of Ventricular Arrhythmias.
J.A. Towbin.
64. Down Syndrome Congenital Heart Disease: Narrowed Region and DSCAM as a.
Candidate Gene.
J.R. Korenberg et al.
65. Studies on the Function of the Exocytosis-Relating Protein HPC-1/Syntaxin 1A and its Relation to Williams Syndrome.
K. Akagawa.
66. Mutations in the Jagged1 gene (JAG1), a Ligand for a Notch Receptor, Are Responsible for Alagille Syndrome.
T. Oda, S. Chandrasekharappa.
67. Chromosomal Deletion and Phenotype Correlation in Patients With Williams.
Syndrome.
M. Kimura et al..
Index.
Colour Appendix
Több
Die Machiavellis der Wissenschaft: Das Netzwerk des Leugnens
9 072 Ft
8 165 Ft
Etiology and Morphogenesis of Congenital Heart Disease
54 941 Ft
49 447 Ft
Alexander Calder and Contemporary Art: Form ? Balance ? Joy
14 308 Ft
12 162 Ft
Rain: The first novel in the thrilling Hudson series
2 011 Ft
1 709 Ft