• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Entropy and Free Energy in Structural Biology: From Thermodynamics to Statistical Mechanics to Computer Simulation

    Entropy and Free Energy in Structural Biology by Meirovitch, Hagai;

    From Thermodynamics to Statistical Mechanics to Computer Simulation

    Sorozatcím: Foundations of Biochemistry and Biophysics;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 47.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 927 Ft (21 835 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 585 Ft off)
      • Kedvezményes ár 18 341 Ft (17 468 Ft + 5% áfa)

    22 927 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.

    Több

    Hosszú leírás:


    Computer simulation has become the main engine of development in statistical mechanics. In structural biology, computer simulation constitutes the main theoretical tool for structure determination of proteins and for calculation of the free energy of binding, which are important in drug design. Entropy and Free Energy in Structural Biology leads the reader to the simulation technology in a systematic way. The book, which is structured as a course, consists of four parts:


    Part I is a short course on probability theory emphasizing (1) the distinction between the notions of experimental probability, probability space, and the experimental probability on a computer, and (2) elaborating on the mathematical structure of product spaces. These concepts are essential for solving probability problems and devising simulation methods, in particular for calculating the entropy.


    Part II starts with a short review of classical thermodynamics from which a non-traditional derivation of statistical mechanics is devised. Theoretical aspects of statistical mechanics are reviewed extensively.


    Part III covers several topics in non-equilibrium thermodynamics and statistical mechanics close to equilibrium, such as Onsager relations, the two Fick's laws, and the Langevin and master equations. The Monte Carlo and molecular dynamics procedures are discussed as well.


    Part IV presents advanced simulation methods for polymers and protein systems, including techniques for conformational search and for calculating the potential of mean force and the chemical potential. Thermodynamic integration, methods for calculating the absolute entropy, and methodologies for calculating the absolute free energy of binding are evaluated.


    Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.

    Több

    Tartalomjegyzék:


    Contents


    Preface ..................................................................................................................................................... xv


    Acknowledgments ...................................................................................................................................xix


    Author .....................................................................................................................................................xxi


    Section I Probability Theory


    1. Probability and Its Applications ..................................................................................................... 3


    1.1 Introduction ............................................................................................................................. 3


    1.2 Experimental Probability ........................................................................................................ 3


    1.3 The Sample Space Is Related to the Experiment .................................................................... 4


    1.4 Elementary Probability Space ................................................................................................ 5


    1.5 Basic Combinatorics ............................................................................................................... 6


    1.5.1 Permutations ............................................................................................................. 6


    1.5.2 Combinations ............................................................................................................ 7


    1.6 Product Probability Spaces ..................................................................................................... 9


    1.6.1 The Binomial Distribution .......................................................................................11


    1.6.2 Poisson Theorem ......................................................................................................11


    1.7 Dependent and Independent Events ...................................................................................... 12


    1.7.1 Bayes Formula......................................................................................................... 12


    1.8 Discrete Probability—Summary .......................................................................................... 13


    1.9 One-Dimensional Discrete Random Variables ..................................................................... 13


    1.9.1 The Cumulative Distribution Function ....................................................................14


    1.9.2 The Random Variable of the Poisson Distribution ..................................................14


    1.10 Continuous Random Variables ..............................................................................................14


    1.10.1 The Normal Random Variable ................................................................................ 15


    1.10.2 The Uniform Random Variable .............................................................................. 15


    1.11 The Expectation Value ...........................................................................................................16


    1.11.1 Examples ..................................................................................................................16


    1.12 The Variance ..........................................................................................................................17


    1.12.1 The Variance of the Poisson Distribution ................................................................18


    1.12.2 The Variance of the Normal Distribution ................................................................18


    1.13 Independent and Uncorrelated Random Variables ............................................................... 19


    1.13.1 Correlation .............................................................................................................. 19


    1.14 The Arithmetic Average ....................................................................................................... 20


    1.15 The Central Limit Theorem .................................................................................................. 21


    1.16 Sampling ............................................................................................................................... 23


    1.17 Stochastic Processes—Markov Chains ................................................................................ 23


    1.17.1 The Stationary Probabilities ................................................................................... 25


    1.18 The Ergodic Theorem ........................................................................................................... 26


    1.19 Autocorrelation Functions .................................................................................................... 27


    1.19.1 Stationary Stochastic Processes .............................................................................. 28


    Homework for Students .................................................................................................................... 28


    A Comment about Notations ............................................................................................................ 28


    References ........................................................................................................................................ 29


    Section II Equilibrium Thermodynamics and Statistical Mechanics


    2. Classical Thermodynamics ........................................................................................................... 33


    2.1 Introduction ........................................................................................................................... 33


    2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems .................................. 33


    2.3 Equilibrium and Reversible Transformations ....................................................................... 34


    2.4 Ideal Gas Mechanical Work and Reversibility ..................................................................... 34


    2.5 The First Law of Thermodynamics ...................................................................................... 36


    2.6 Joule’s Experiment ................................................................................................................ 37


    2.7 Entropy .................................................................................................................................. 39


    2.8 The Second Law of Thermodynamics .................................................................................. 40


    2.8.1 Maximal Entropy in an Isolated System..................................................................41


    2.8.2 Spontaneous Expansion of an Ideal Gas and Probability ....................................... 42


    2.8.3 Reversible and Irreversible Processes Including Work ........................................... 42


    2.9 The Third Law of Thermodynamics .................................................................................... 43


    2.10 Thermodynamic Potentials ................................................................................................... 43


    2.10.1 The Gibbs Relation ................................................................................................. 43


    2.10.2 The Entropy as the Main Potential ......................................................................... 44


    2.10.3 The Enthalpy ........................................................................................................... 45


    2.10.4 The Helmholtz Free Energy .................................................................................... 45


    2.10.5 The Gibbs Free Energy ........................................................................................... 45


    2.10.6 The Free Energy, H(T,μ) ........................................................................................ 46


    2.11 Maximal Work in Isothermal and Isobaric Transformations ............................................... 47


    2.12 Euler’s Theorem and Additional Relations for the Free Energies ........................................ 48


    2.12.1 Gibbs-Duhem Equation .......................................................................................... 49


    2.13 Summary ............................................................................................................................... 49


    Homework for Students .................................................................................................................... 49


    References ........................................................................................................................................ 49


    Further Reading ................................................................................................................................ 49


    3. From Thermodynamics to Statistical Mechanics ........................................................................51


    3.1 Phase Space as a Probability Space .......................................................................................51


    3.2 Derivation of the Boltzmann Probability ............................................................................. 52


    3.3 Statistical Mechanics Averages ............................................................................................ 54


    3.3.1 The Average Energy ................................................................................................ 54


    3.3.2 The Average Entropy .............................................................................................. 54


    3.3.3 The Helmholtz Free Energy .................................................................................... 55


    3.4 Various Approaches for Calculating Thermodynamic Parameters ...................................... 55


    3.4.1 Thermodynamic Approach ..................................................................................... 55


    3.4.2 Probabilistic Approach ........................................................................................... 56


    3.5 The Helmholtz Free Energy of a Simple Fluid ..................................................................... 56


    Reference .......................................................................................................................................... 58


    Further Reading ................................................................................................................................ 58


    4. Ideal Gas and the Harmonic Oscillator ....................................................................................... 59


    4.1 From a Free Particle in a Box to an Ideal Gas ...................................................................... 59


    4.2 Properties of an Ideal Gas by the Thermodynamic Approach ............................................. 60


    4.3 The chemical potential of an Ideal Gas ................................................................................ 62


    4.4 Treating an Ideal Gas by the Probability Approach ............................................................. 63


    4.5 The Macroscopic Harmonic Oscillator ................................................................................ 64


    4.6 The Microscopic Oscillator .................................................................................................. 65


    4.6.1 Partition Function and Thermodynamic Properties ............................................... 66


    4.7 The Quantum Mechanical Oscillator ................................................................................... 68


    4.8 Entropy and Information in Statistical Mechanics ............................................................... 71


    4.9 The Configurational Partition Function ................................................................................ 71


    Homework for Students .................................................................................................................... 72


    References ........................................................................................................................................ 72


    Further Reading ................................................................................................................................ 72


    5. Fluctuations and the Most Probable Energy ............................................................................... 73


    5.1 The Variances of the Energy and the Free Energy ............................................................... 73


    5.2 The Most Contributing Energy E* ....................................................................................... 74


    5.3 Solving Problems in Statistical Mechanics .......................................................................... 76


    5.3.1 The Thermodynamic Approach .............................................................................. 77


    5.3.2 The Probabilistic Approach .................................................................................... 78


    5.3.3 Calculating the Most Probable Energy Term .......................................................... 79


    5.3.4 The Change of Energy and Entropy with Temperature .......................................... 80


    References ........................................................................................................................................ 81


    6. Various Ensembles ......................................................................................................................... 83


    6.1 The Microcanonical (petit) Ensemble .................................................................................. 83


    6.2 The Canonical (NVT) Ensemble ........................................................................................... 84


    6.3 The Gibbs (NpT) Ensemble .................................................................................................. 85


    6.4 The Grand Canonical (μVT) Ensemble ................................................................................ 88


    6.5 Averages and Variances in Different Ensembles .................................................................. 90


    6.5.1 A Canonical Ensemble Solution (Maximal Term Method) .................................... 90


    6.5.2 A Grand-Canonical Ensemble Solution .................................................................. 91


    6.5.3 Fluctuations in Different Ensembles....................................................................... 91


    References ........................................................................................................................................ 92


    Further Reading ................................................................................................................................ 92


    7. Phase Transitions ........................................................................................................................... 93


    7.1 Finite Systems versus the Thermodynamic Limit ................................................................ 93


    7.2 First-Order Phase Transitions ............................................................................................... 94


    7.3 Second-Order Phase Transitions ........................................................................................... 95


    References ........................................................................................................................................ 98


    8. Ideal Polymer Chains ..................................................................................................................... 99


    8.1 Models of Macromolecules ................................................................................................... 99


    8.2 Statistical Mechanics of an Ideal Chain ............................................................................... 99


    8.2.1 Partition Function and Thermodynamic Averages ............................................... 100


    8.3 Entropic Forces in an One-Dimensional Ideal Chain..........................................................101


    8.4 The Radius of Gyration ...................................................................................................... 104


    8.5 The Critical Exponent ν ...................................................................................................... 105


    8.6 Distribution of the End-to-End Distance ............................................................................ 106


    8.6.1 Entropic Forces Derived from the Gaussian Distribution .................................... 107


    8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem .... 108


    8.8 Ideal Chains and the Random Walk ................................................................................... 109


    8.9 Ideal Chain as a Model of Reality .......................................................................................110


    References .......................................................................................................................................110


    9. Chains with Excluded Volume .....................................................................................................111


    9.1 The Shape Exponent ν for Self-avoiding Walks ..................................................................111


    9.2 The Partition Function .........................................................................................................112


    9.3 Polymer Chain as a Critical System ....................................................................................113


    9.4 Distribution of the End-to-End Distance .............................................................................114


    9.5 The Effect of Solvent and Temperature on the Chain Size .................................................115


    9.5.1 θ Chains in d = 3 ...................................................................................................116


    9.5.2 θ Chains in d = 2 ...................................................................................................116


    9.5.3 The Crossover Behavior Around θ.........................................................................117


    9.5.4 The Blob Picture ....................................................................................................118


    9.6 Summary ..............................................................................................................................119


    References .......................................................................................................................................119


    Section III Topics in Non-Equilibrium Thermodynamics


    and Statistical Mechanics


    10. Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics .............. 123


    10.1 Introduction ......................................................................................................................... 123


    10.2 Sampling the Energy and Entropy and New Notations ...................................................... 124


    10.3 More About Importance Sampling ..................................................................................... 125


    10.4 The Metropolis Monte Carlo Method ................................................................................. 126


    10.4.1 Symmetric and Asymmetric MC Procedures ....................................................... 127


    10.4.2 A Grand-Canonical MC Procedure ...................................................................... 128


    10.5 Efficiency of Metropolis MC .............................................................................................. 129


    10.6 Molecular Dynamics in the Microcanonical Ensemble ......................................................131


    10.7 MD Simulations in the Canonical Ensemble ...................................................................... 134


    10.8 Dynamic MD Calculations ..................................................................................................135


    10.9 Efficiency of MD .................................................................................................................135


    10.9.1 Periodic Boundary Conditions and Ewald Sums .................................................. 136


    10.9.2 A Comment About MD Simulations and Entropy................................................ 136


    References ...................................................................................................................................... 137


    11. Non-Equilibrium Thermodynamics—Onsager Theory .......................................................... 139


    11.1 Introduction ......................................................................................................................... 139


    11.2 The Local-Equilibrium Hypothesis .................................................................................... 139


    11.3 Entropy Production Due to Heat Flow in a Closed System ................................................ 140


    11.4 Entropy Production in an Isolated System...........................................................................141


    11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities ..................................142


    11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium .......................................143


    11.6 Fourier’s Law—A Continuum Example of Linearity ......................................................... 144


    11.7 Statistical Mechanics Picture of Irreversibility ...................................................................145


    11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance ............147


    11.9 Onsager’s Reciprocal Relations ...........................................................................................149


    11.10 Applications ........................................................................................................................ 150


    11.11 Steady States and the Principle of Minimum Entropy Production .....................................151


    11.12 Summary ..............................................................................................................................152


    References .......................................................................................................................................152


    12. Non-equilibrium Statistical Mechanics ......................................................................................153


    12.1 Fick’s Laws for Diffusion ....................................................................................................153


    12.1.1 First Fick’s Law ......................................................................................................153


    12.1.2 Calculation of the Flux from Thermodynamic Considerations ............................ 154


    12.1.3 The Continuity Equation ........................................................................................155


    12.1.4 Second Fick’s Law—The Diffusion Equation ...................................................... 156


    12.1.5 Diffusion of Particles Through a Membrane ........................................................ 156


    12.1.6 Self-Diffusion ........................................................................................................ 156


    12.2 Brownian Motion: Einstein’s Derivation of the Diffusion Equation .................................. 158


    12.3 Langevin Equation .............................................................................................................. 160


    12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem .........................162


    12.3.2 Correlation Functions.............................................................................................163


    12.3.3 The Displacement of a Langevin Particle ............................................................. 164


    12.3.4 The Probability Distributions of the Velocity and the Displacement ................... 166


    12.3.5 Langevin Equation with a Charge in an Electric Field ..........................................168


    12.3.6 Langevin Equation with an External Force—The Strong Damping Velocity .......168


    12.4 Stochastic Dynamics Simulations .......................................................................................169


    12.4.1 Generating Numbers from a Gaussian Distribution by CLT .................................170


    12.4.2 Stochastic Dynamics versus Molecular Dynamics................................................171


    12.5 The Fokker-Planck Equation ...............................................................................................171


    12.6 Smoluchowski Equation.......................................................................................................174


    12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force...........................175


    12.8 Summary of Pairs of Equations ...........................................................................................175


    References .......................................................................................................................................176


    13. The Master Equation ....................................................................................................................177


    13.1 Master Equation in a Microcanonical System .....................................................................177


    13.2 Master Equation in the Canonical Ensemble.......................................................................178


    13.3 An Example from Magnetic Resonance ............................................................................. 180


    13.3.1 Relaxation Processes Under Various Conditions ...................................................181


    13.3.2 Steady State and the Rate of Entropy Production ................................................. 184


    13.4 The Principle of Minimum Entropy Production—Statistical Mechanics Example............185


    References .......................................................................................................................................186


    Section IV Advanced Simulation Methods: Polymers


    and Biological Macromolecules


    14. Growth Simulation Methods for Polymers .................................................................................189


    14.1 Simple Sampling of Ideal Chains ........................................................................................189


    14.2 Simple Sampling of SAWs .................................................................................................. 190


    14.3 The Enrichment Method ..................................................................................................... 192


    14.4 The Rosenbluth and Rosenbluth Method ............................................................................ 193


    14.5 The Scanning Method ......................................................................................................... 195


    14.5.1 The Complete Scanning Method .......................................................................... 195


    14.5.2 The Partial Scanning Method ............................................................................... 196


    14.5.3 Treating SAWs with Finite Interactions ................................................................ 197


    14.5.4 A Lower Bound for the Entropy ........................................................................... 197


    14.5.5 A Mean-Field Parameter ....................................................................................... 198


    14.5.6 Eliminating the Bias by Schmidt’s Procedure ...................................................... 199


    14.5.7 Correlations in the Accepted Sample ................................................................... 200


    14.5.8 Criteria for Efficiency ........................................................................................... 201


    14.5.9 Locating Transition Temperatures ........................................................................ 202


    14.5.10 The Scanning Method versus Other Techniques .................................................. 203


    14.5.11 The Stochastic Double Scanning Method ............................................................ 204


    14.5.12 Future Scanning by Monte Carlo .......................................................................... 204


    14.5.13 The Scanning Method for the Ising Model and Bulk Systems ............................. 205


    14.6 The Dimerization Method .................................................................................................. 206


    References ...................................................................................................................................... 208


    15. The Pivot Algorithm and Hybrid Techniques ............................................................................211


    15.1 The Pivot Algorithm—Historical Notes ..............................................................................211


    15.2 Ergodicity and Efficiency ....................................................................................................211


    15.3 Applicability ........................................................................................................................212


    15.4 Hybrid and Grand-Canonical Simulation Methods .............................................................213


    15.5 Concluding Remarks ............................................................................................................214


    References .......................................................................................................................................214


    16. Models of Proteins .........................................................................................................................217


    16.1 Biological Macromolecules versus Polymers ......................................................................217


    16.2 Definition of a Protein Chain ...............................................................................................217


    16.3 The Force Field of a Protein ................................................................................................218


    16.4 Implicit Solvation Models ....................................................................................................219


    16.5 A Protein in an Explicit Solvent ......................................................................................... 220


    16.6 Potential Energy Surface of a Protein ................................................................................ 221


    16.7 The Problem of Protein Folding ......................................................................................... 222


    16.8 Methods for a Conformational Search ................................................................................ 222


    16.8.1 Local Minimization—The Steepest Descents Method ........................................ 223


    16.8.2 Monte Carlo Minimization ................................................................................... 224


    16.8.3 Simulated Annealing ............................................................................................ 225


    16.9 Monte Carlo and Molecular Dynamics Applied to Proteins .............................................. 225


    16.10 Microstates and Intermediate Flexibility ........................................................................... 226


    16.10.1 On the Practical Definition of a Microstate .......................................................... 227


    References ...................................................................................................................................... 227


    17. Calculation of the Entropy and the Free Energy by Thermodynamic Integration ................231


    17.1 “Calorimetric” Thermodynamic Integration ...................................................................... 232


    17.2 The Free Energy Perturbation Formula .............................................................................. 232


    17.3 The Thermodynamic Integration Formula of Kirkwood ................................................... 234


    17.4 Applications ........................................................................................................................ 235


    17.4.1 Absolute Entropy of a SAW Integrated from an Ideal Chain Reference State ..... 235


    17.4.2 Harmonic Reference State of a Peptide ................................................................ 237


    17.5 Thermodynamic Cycles ...................................................................................................... 237


    17.5.1 Other Cycles .......................................................................................................... 240


    17.5.2 Problems of TI and FEP Applied to Proteins ....................................................... 240


    References ...................................................................................................................................... 241


    18. Direct Calculation of the Absolute Entropy and Free Energy ................................................ 243


    18.1 Absolute Free Energy from <exp[+E/kBT]> ...................................................................... 243


    18.2 The Harmonic Approximation ........................................................................................... 244


    18.3 The M2 Method .................................................................................................................. 245


    18.4 The Quasi-Harmonic Approximation ................................................................................. 246


    18.5 The Mutual Information Expansion ................................................................................... 247


    18.6 The Nearest Neighbor Technique ....................................................................................... 248


    18.7 The MIE-NN Method ......................................................................................................... 249


    18.8 Hybrid Approaches ............................................................................................................. 249


    References ...................................................................................................................................... 249


    19. Calculation of the Absolute Entropy from a Single Monte Carlo Sample...............................251


    19.1 The Hypothetical Scanning (HS) Method for SAWs ...........................................................251


    19.1.1 An Exact HS Method .............................................................................................251


    19.1.2 Approximate HS Method ...................................................................................... 252


    19.2 The HS Monte Carlo (HSMC) Method .............................................................................. 253


    19.3 Upper Bounds and Exact Functionals for the Free Energy ................................................ 255


    19.3.1 The Upper Bound FB ............................................................................................ 255


    19.3.2 FB Calculated by the Reversed Schmidt Procedure ............................................. 256


    19.3.3 A Gaussian Estimation of FB ................................................................................ 257


    19.3.4 Exact Expression for the Free Energy .................................................................. 258


    19.3.5 The Correlation Between σA and FA ..................................................................... 258


    19.3.6 Entropy Results for SAWs on a Square Lattice .................................................... 259


    19.4 HS and HSMC Applied to the Ising Model ........................................................................ 260


    19.5 The HS and HSMC Methods for a Continuum Fluid ..........................................................261


    19.5.1 The HS Method ......................................................................................................261


    19.5.2 The HSMC Method ............................................................................................... 262


    19.5.3 Results for Argon and Water ................................................................................. 264


    19.5.3.1 Results for Argon .................................................................................. 264


    19.5.3.2 Results for Water .................................................................................. 266


    19.6 HSMD Applied to a Peptide ............................................................................................... 266


    19.6.1 Applications .......................................................................................................... 269


    19.7 The HSMD-TI Method ....................................................................................................... 269


    19.8 The LS Method ................................................................................................................... 270


    19.8.1 The LS Method Applied to the Ising Model ......................................................... 270


    19.8.2 The LS Method Applied to a Peptide ................................................................... 272


    References .......................................................................................................................................274


    20. The Potential of Mean Force, Umbrella Sampling, and Related Techniques ........................ 277


    20.1 Umbrella Sampling ............................................................................................................. 277


    20.2 Bennett’s Acceptance Ratio ................................................................................................ 278


    20.3 The Potential of Mean Force .............................................................................................. 281


    20.3.1 Applications .......................................................................................................... 284


    20.4 The Self-Consistent Histogram Method ............................................................................. 285


    20.4.1 Free Energy from a Single Simulation.................................................................. 286


    20.4.2 Multiple Simulations and The Self-Consistent Procedure.................................... 286


    20.5 The Weighted Histogram Analysis Method ....................................................................... 289


    20.5.1 The Single Histogram Equations .......................................................................... 290


    20.5.2 The WHAM Equations ..........................................................................................291


    20.5.3 Enhancements of WHAM .................................................................................... 293


    20.5.4 The Basic MBAR Equation .................................................................................. 295


    20.5.5 ST-WHAM and UIM ............................................................................................ 296


    20.5.6 Summary ............................................................................................................... 296


    References ...................................................................................................................................... 297


    21. Advanced Simulation Methods and Free Energy Techniques ................................................. 301


    21.1 Replica-Exchange ............................................................................................................... 301


    21.1.1 Temperature-Based REM ..................................................................................... 301


    21.1.2 Hamiltonian-Dependent Replica Exchange .......................................................... 305


    21.2 The Multicanonical Method ............................................................................................... 308


    21.2.1 Applications ...........................................................................................................311


    21.2.2 MUCA-Summary ..................................................................................................312


    21.3 The Method of Wang and Landau .......................................................................................312


    21.3.1 The Wang and Landau Method-Applications ........................................................314


    21.4 The Method of Expanded Ensembles ..................................................................................315


    21.4.1 The Method of Expanded Ensembles-Applications ..............................................317


    21.5 The Adaptive Integration Method .......................................................................................317


    21.6 Methods Based on Jarzynski’s Identity ...............................................................................319


    21.6.1 Jarzynski’s Identity versus Other Methods for Calculating ΔF ........................... 323


    21.7 Summary ............................................................................................................................. 324


    References ...................................................................................................................................... 324


    22. Simulation of the Chemical Potential ..........................................................................................331


    22.1 The Widom Insertion Method .............................................................................................331


    22.2 The Deletion Procedure .......................................................................................................332


    22.3 Personage’s Method for Treating Deletion ......................................................................... 334


    22.4 Introduction of a Hard Sphere ............................................................................................ 336


    22.5 The Ideal Gas Gauge Method ............................................................................................. 337


    22.6 Calculation of the Chemical Potential of a Polymer by the Scanning Method .................. 338


    22.7 The Incremental Chemical Potential Method for Polymers ............................................... 340


    22.8 Calculation of μ by Thermodynamic Integration ................................................................341


    References .......................................................................................................................................341


    23. The Absolute Free Energy of Binding ........................................................................................ 343


    23.1 The Law of Mass Action ..................................................................................................... 343


    23.2 Chemical Potential, Fugacity, and Activity of an Ideal Gas............................................... 344


    23.2.1 Thermodynamics .................................................................................................. 344


    23.2.2 Canonical Ensemble.............................................................................................. 344


    23.2.3 NpT Ensemble ....................................................................................................... 345


    23.3 Chemical Potential in Ideal Solutions: Raoult’s and Henry’s Laws ................................... 345


    23.3.1 Raoult’s Law ......................................................................................................... 346


    23.3.2 Henry’s Law .......................................................................................................... 346


    23.4 Chemical Potential in Non-ideal Solutions ......................................................................... 346


    23.4.1 Solvent ................................................................................................................... 346


    23.4.2 Solute ..................................................................................................................... 347


    23.5 Thermodynamic Treatment of Chemical Equilibrium ....................................................... 347


    23.6 Chemical Equilibrium in Ideal Gas Mixtures: Statistical Mechanics ................................ 348


    23.7 Pressure-Dependent Equilibrium Constant of Ideal Gas Mixtures .................................... 349


    23.8 Protein-Ligand Binding ...................................................................................................... 350


    23.8.1 Standard Methods for Calculating ΔA0 .................................................................352


    23.8.2 Calculating ΔA0 by HSMD-TI .............................................................................. 354


    23.8.3 HSMD-TI Applied to the FKBP12-FK506 Complex: Equilibration ................... 356


    23.8.4 The Internal and External Entropies..................................................................... 357


    23.8.5 TI Results for FKBP12-FK506 ............................................................................. 360


    23.8.6 ΔA0 Results for FKBP12-FK506 .......................................................................... 360


    23.9 Summary ............................................................................................................................. 362


    References ...................................................................................................................................... 362


    Appendix ............................................................................................................................................... 367


    Index ...................................................................................................................................................... 369

    Több