Elements of Applied Bifurcation Theory
Sorozatcím: Applied Mathematical Sciences; 112;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 181.89
-
75 438 Ft (71 846 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 15 088 Ft off)
- Kedvezményes ár 60 351 Ft (57 477 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
75 438 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 4
- Kiadó Springer International Publishing
- Megjelenés dátuma 2024. április 19.
- Kötetek száma 1 pieces, Book
- ISBN 9783031220098
- Kötéstípus Puhakötés
- Lásd még 9783031220067
- Terjedelem703 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk XXVI, 703 p. 287 illus. Illustrations, black & white 555
Kategóriák
Hosszú leírás:
"
This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations.
The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used.
This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis.
From reviews of earlier editions:
""I know of no other book that so clearly explains the basic phenomena of bifurcation theory."" - Math Reviews
""The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject."" - Bulletin of the AMS
""It is both a toolkit and a primer"" - UK Nonlinear News
From Reviews of the First Edition: ""I know of no other book that so clearly explains the basic phenomena of bifurcation theory."" –Mathematical Reviews
This book provides a student or researcher with a solid basis in nonlinear dynamical systems and their bifurcations, giving them the necessary understanding of the approaches, methods, results and terminology used in the modern applied mathematics literature. It covers the basic topics of the bifurcation theory and can help in composing a course on nonlinear dynamical systems or system theory. This new edition preserves the structure of the previous edition, while updating the context to incorporate recent theoretical and software developments, in particular new and improved numerical methods for bifurcation analysis.
" TöbbTartalomjegyzék:
1 Introduction to Dynamical Systems.- 2 Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems.- 3 One-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 4 One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 5 Bifurcations of Equilibria and Periodic Orbits in n-Dimensional Dynamical Systems.- 6 Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria.- 7 Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems.- 8 Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems.- 9 Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems.- 10 Numerical Analysis of Bifurcations.- A Basic Notions from Algebra, Analysis, and Geometry.- A.1 Algebra.- A.1.1 Matrices.- A.1.2 Vector spaces and linear transformations.- A.1.3 Eigenvectors and eigenvalues.- A.1.4 Invariant subspaces, generalized eigenvectors, and Jordan normal form.- A.1.5 FredholmAlternative Theorem.- A.1.6 Groups.- A.2 Analysis.- A.2.1 Implicit and Inverse Function Theorems.- A.2.2 Taylor expansion.- A.2.3 Metric, normed, and other spaces.- A.3 Geometry.- A.3.1 Sets.- A.3.2 Maps.- A.3.3 Manifolds.- References.
Több