• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Deep Learning and Its Applications for Vehicle Networks

    Deep Learning and Its Applications for Vehicle Networks by Hu, Fei; Rasheed, Iftikhar;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 110.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        52 552 Ft (50 050 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 10 510 Ft off)
      • Kedvezményes ár 42 042 Ft (40 040 Ft + 5% áfa)

    52 552 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1
    • Kiadó CRC Press
    • Megjelenés dátuma 2023. május 12.

    • ISBN 9781032041377
    • Kötéstípus Keménykötés
    • Terjedelem356 oldal
    • Méret 254x178 mm
    • Súly 820 g
    • Nyelv angol
    • Illusztrációk 160 Illustrations, black & white; 35 Halftones, black & white; 125 Line drawings, black & white; 31 Tables, black & white
    • 461

    Kategóriák

    Rövid leírás:

    This book is based on the work from world-famous experts on the application of DL for vehicle networks. It consists of the following five parts: 1. DL for vehicle safety and security, 2. DL for effective vehicle communications, 3. DL for vehicle control, 4. DL for information management, 5. Other applications.

    Több

    Hosszú leírás:

    Deep Learning (DL) is an effective approach for AI-based vehicular networks and can deliver a powerful set of tools for such vehicular network dynamics. In various domains of vehicular networks, DL can be used for learning-based channel estimation, traffic flow prediction, vehicle trajectory prediction, location-prediction-based scheduling and routing, intelligent network congestion control mechanism, smart load balancing and vertical handoff control, intelligent network security strategies, virtual smart and efficient resource allocation and intelligent distributed resource allocation methods.


    This book is based on the work from world-famous experts on the application of DL for vehicle networks. It consists of the following five parts:


    (I) DL for vehicle safety and security: This part covers the use of DL algorithms for vehicle safety or security.


    (II) DL for effective vehicle communications: Vehicle networks consist of vehicle-to-vehicle and vehicle-to-roadside communications. This part covers how Intelligent vehicle networks require a flexible selection of the best path across all vehicles, adaptive sending rate control based on bandwidth availability and timely data downloads from a roadside base-station.


    (III) DL for vehicle control: The myriad operations that require intelligent control for each individual vehicle are discussed in this part. This also includes emission control, which is based on the road traffic situation, the charging pile load is predicted through DL andvehicle speed adjustments based on the camera-captured image analysis.


    (IV) DL for information management: This part covers some intelligent information collection and understanding. We can use DL for energy-saving vehicle trajectory control based on the road traffic situation and given destination information; we can also natural language processing based on DL algorithm for automatic internet of things (IoT) search during driving.


    (V) Other applications. This part introduces the use of DL models for other vehicle controls.



    Autonomous vehicles are becoming more and more popular in society. The DL and its variants will play greater roles in cognitive vehicle communications and control. Other machine learning models such as deep reinforcement learning will also facilitate intelligent vehicle behavior understanding and adjustment. This book will become a valuable reference to your understanding of this critical field.

    Több

    Tartalomjegyzék:

    Part I. Deep Learning for Vehicle Safety and Security


    1. Deep Learning for Vehicle Safety. 2. Deep Learning for Driver Drowsiness Classification for a Safe Vehicle Application. 3. A Deep Learning Perspective on Connected Automated Vehicle (CAV) Cybersecurity and Threat Intelligence..


    Part II. Deep Learning for Vehicle Communications


    4. Deep Learning for UAV Network Optimization. 5. State-of-the-Art in PHY Layer Deep Learning for Future Wireless Communication Systems and Networks. 6. Deep Learning-Based Index Modulation Systems for Vehicle Communications. 7. Deep Reinforcement Learning Applications in Connected-Automated Transportation Systems.


    Part III. Deep Learning for Vehicle Control



    8. Vehicle Emission Control on Road with Temporal Traffic Information using Deep Reinforcement Learning. 9. Load Prediction of Electric Vehicle Charging Pile. 10. Deep Learning for Autonomous Vehicles: A Vision-Based Approach to Self-Adapted Robust Control.



    Part IV. DL for Information Management


    11. A Natural Language Processing Based Approach for Automating IoT Search. 12. Towards Incentive-Compatible Vehicular Crowdsensing: A Reinforcement Learning-Based Approach. 13. Sub-Signal Detection from Noisy Complex Signals Using Deep Learning and Mathematical Morphology.


    Part V. Miscellaneous


    14. The Basics of Deep Learning Algorithms and their effect on driving behavior and vehicle communications. 15. Integrated Simulation of Deep Learning, Computer Vision and Physical Layer of UAV and Ground Vehicle Networks.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Deep Learning and Its Applications for Vehicle Networks

    Deep Learning and Its Applications for Vehicle Networks

    Hu, Fei; Rasheed, Iftikhar; (ed.)

    52 552 Ft

    42 042 Ft

    20% %kedvezmény
    Deep Learning and Its Applications for Vehicle Networks

    Statistical Foundations, Reasoning and Inference: For Science and Data Science

    Kauermann, Göran; Küchenhoff, Helmut; Heumann, Christian

    48 811 Ft

    39 049 Ft

    20% %kedvezmény
    Deep Learning and Its Applications for Vehicle Networks

    Online Algorithms

    Vaze, Rahul;

    26 271 Ft

    21 017 Ft

    20% %kedvezmény
    Deep Learning and Its Applications for Vehicle Networks

    Enhancing Fieldwork Learning Using Mobile Technologies

    France, Derek; Whalley, W. Brian; Mauchline, Alice;

    22 184 Ft

    17 748 Ft

    20% %kedvezmény
    Deep Learning and Its Applications for Vehicle Networks

    Topics in Numerical Methods for Finance

    Cummins, Mark; Murphy, Finbarr; Miller, John J.H.

    44 374 Ft

    35 499 Ft

    next