• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Data-Based Methods for Materials Design and Discovery: Basic Ideas and General Methods

    Data-Based Methods for Materials Design and Discovery by Pilania, Ghanshyam; Balachandran, Prasanna V.; Gubernatis, James E.; Lookman, Turab;

    Basic Ideas and General Methods

    Sorozatcím: Synthesis Lectures on Materials and Optics;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 184 Ft (21 128 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 437 Ft off)
      • Kedvezményes ár 17 748 Ft (16 902 Ft + 5% áfa)

    22 184 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Machine learning methods are changing the way we design and discover new materials. This book provides an overview of approaches successfully used in addressing materials problems (alloys, ferroelectrics, dielectrics) with a focus on probabilistic methods, such as Gaussian processes, to accurately estimate density functions. The authors, who have extensive experience in this interdisciplinary field, discuss generalizations where more than one competing material property is involved or data with differing degrees of precision/costs or fidelity/expense needs to be considered.

    Több

    Tartalomjegyzék:

    Preface.- Acknowledgments.- Introduction.- Materials Representations.- Learning with Large Databases.- Learning with Small Databases.- Multi-Objective Learning.- Multi-Fidelity Learning.- Some Closing Thoughts.- Authors' Biographies.

    Több