• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Computational Methods for the Multiscale Modeling of Soft Matter

    Computational Methods for the Multiscale Modeling of Soft Matter by Carbone, Paola; Clarke, Nigel;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 186.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        78 928 Ft (75 169 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 7 893 Ft off)
      • Kedvezményes ár 71 035 Ft (67 652 Ft + 5% áfa)

    78 928 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Computational Methods for the Multiscale Modeling of Soft Matter offers a thorough overview of various simulation techniques essential for the study of soft materials. This book delves into numerical and molecular modeling methods, spanning multiple time and length scales. It is particularly valuable for postgraduate students and researchers in materials science, computational physics, chemistry, and chemical engineering. Alongside fundamental theoretical concepts, the book includes numerous examples from a wide range of soft materials, demonstrating how computational methods complement experimental characterization and significantly advance the manufacturing sector.

    Chapters illustrate how modeling techniques aid in interpreting experimental data and how experiments help parameterize models. The book also enables experts in one technique to transition to other tools more easily, which is increasingly important as multiscale tools become more sophisticated and accessible. It brings together diverse modeling approaches and applications, creating a comprehensive resource for understanding simulation methods for soft materials such as polymers, surfactants, and colloids.




    • Introduces the theoretical underpinnings of a broad range of soft matter modeling techniques
    • Demonstrates the critical assessment of the strengths and weaknesses of each of the techniques, including comparisons with experimental data when possible
    • Provides example applications to guide the reader through how techniques can be used in practice

    Több

    Tartalomjegyzék:

    Part I: Soft Matter Modelling Methods
    1: Lattice models. Predicting the thermodynamics of polymer blends and dynamics in thin films. Professor Janes Lipson, Dartmouth (USA)
    2. Statistical mechanics of the dynamics of macromolecular liquids. Professor Marina Guenza, University of Oregon (USA)
    3: Constitutive models. Relating molecular structure to rheological response. Professor Ronald G. Larson, University of Michigan (USA)
    4. Applying MD to entangled polymers. Professor Martin Kroeger, ETH (Switzerland)
    5. Self-Consistent Field Theory for the prediction of microphase separation in block copolymers. Dr Bart Vorselaars, University of Lincoln (UK)
    6. Recent developments in the simulation of surfactsant systems using Dissipative Particle Dynamics. Dr Patrick Warren, STFC (UK)
    7. Polyelectroyltes. Professor Monica Olvera de la Cruz, Northwestern University (USA)
    8. Lattice Boltzmann methods and applications to polymers. Professor Anna Balazs, University of Pittsburgh (USA)
    9. Methods for equilibration of polymer systems. Professor Kurt Kremer, Max Plank Institute Mainz (Germany)
    10. Coarse-graining of macromolecules. Professor Florian Mueller-Plathe, Technical University Darmstadt (Germany)
    11. Mixing atoms and coarse-grained beads in modelling polymers. Dr Nicodemo Di Pasquale, Brunel University (UK)
    12. Polymer phase separation. Professor Hajime Tananka, University of Tokyo (Japan)
    13. Montecarlo simulations for colloidal systems. Professor Marjolein Dijkstra, University of Utrecht (NL)
    14. Polymer informatics. Dr Yoshihiro Hayashi, University of Tokyo (Japan)

    Part II: Applications
    15. Nanocomposites. Applying MD to determine polymer structure and dynamics in the presence of nanoparticles. Dr Argyrios Karatrantos (Luxemburg)
    16. Polymer composites modelling in the tyre industry. Dr Giuliana Giunta, BASF (Germany)
    17. Structure-property relationship in Amorphous Microporous Polymers. Professor Coray Colina, University of Florida (USA)
    18. Using SCFT to predict the structure of chains grafted to nanoparticles. Professor Michael J. A. Hore, NIST (USA)
    19. Dynamics and structure of polymers at the interface. Professor Vagelis Harmandaris, University of Crete (Greece)
    20. Modelling charge transfer in polymers. Professor Alessandro Troisi, University of Liverpool (UK)
    21. Modelling structure - property relations in organic photovoltaics. Professor Venkat Ganesan, University of Texas (USA)
    22. Monte carlo simulations of polydisperse packings of colloidal systems. Carlos Avendano, University of Manchester (UK)
    23. Using Dissipative Particles Dynamics to model polymeric systems. Professor Martin Lisal, Institute of Chemical Process Fundamentals of the CAS (Czech Republic)

    Több