• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Biomeasurement: A student's guide to biological statistics

    Biomeasurement by Hawkins, Dawn;

    A student's guide to biological statistics

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 26.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        12 894 Ft (12 280 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 1 289 Ft off)
      • Kedvezményes ár 11 605 Ft (11 052 Ft + 5% áfa)

    12 894 Ft

    Beszerezhetőség

    Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2
    • Kiadó OUP Oxford
    • Megjelenés dátuma 2009. március 19.

    • ISBN 9780199219995
    • Kötéstípus Puhakötés
    • Terjedelem368 oldal
    • Méret 246x189x21 mm
    • Súly 697 g
    • Nyelv angol
    • Illusztrációk 100 Black and White illustrations
    • 0

    Kategóriák

    Rövid leírás:

    Biomeasurement offers a refreshing, student-focused introduction to the use of statistics in the study of the biosciences. Emphasising why statistical techniques are essential tools for bioscientists, the book removes the stigma attached to statistics by giving students the confidence to use key techniques for themselves.

    Több

    Hosszú leírás:

    Statistical analysis allows us to attach meaning to data which we have collected; it helps us to understand what results really mean, and to assess whether we can trust what experiments seem to be telling us. Yet, despite being a collection of the most valuable and important tools available to bioscientists, statistics is the aspect of study which most students fear more than any other.

    Biomeasurement offers a refreshing, student-focused introduction to the use of statistics in the study of the biosciences. With an emphasis on why statistical techniques are essential tools for bioscientists, the book removes the stigma attached to statistics by giving students the confidence to use and further explore the key techniques for themselves.

    The book starts by placing the role of data analysis in the context of wider scientific method, and introduces the student to the key terms and concepts which are common to all statistical tools. It then guides the student through descriptive statistics, and on to inferential statistics, explaining how and why each type of technique is used, and what each can tell us in order to better understand our data. The book goes on to present the key statistical tests, walking the student step-wise
    through the use of each, with carefully integrated examples, and plentiful opportunities for hands-on practice. The book closes with an overview of choosing the right test to suit your data, and tools for presenting data and their statistical analyses.

    Written by a talented educator, whose teaching has won praise from the UK's Quality and Assurance Agency for Higher Education, Biomeasurement is sure to engage even the most wary of students, demonstrating the power and importance of statistics throughout the study of bioscience.

    Online Resource Centre
    The Online Resource Centre to accompany Biomeasurement features

    For lecturers:
    BL Figures from the book in electronic format, ready to download.

    For students:
    BL Data set, for use in a variety of statistical packages, so that students can practise carrying out statistical analysis.
    BL Literature link articles: full-text versions of the Literature Link articles cited in the text.
    BL Interactive calculation sheets to help students carry out key statistical tests quickly and easily, without needing other software.

    This is a very user-friendly introduction to statistical methods for first-year undergraduate biology students.

    Több

    Tartalomjegyzék:

    Chapter 1: Why am I reading this book?
    My lecturer is a sadist!
    Doing science: the big picture
    The process in practice
    Essential skills for doing science
    Types of data analysis
    Chapter 2: Getting to grips with the basics
    Populations and samples
    Variation and variables
    Understanding data
    Demystifying formulae
    Chapter 3: Describing a single sample
    The single sample
    Descriptive statistics
    Frequency distributions
    Pies, boxes, and errors
    Example data: ranger patrol tusk records
    Worked example: using SPSS
    Chapter 4: Inferring and estimating
    Overview of inferential statistics
    Inferring through estimation
    Exampledata: ground squirrels
    Worked example: using SPSS
    Chapter 5: Overview of hypothesis testing
    Four steps of (statistical) hypothesis testing
    Error and power
    Parametric and nonparametric
    One-and two-tailed tests
    Chapter 6: Tests on frequencies
    Introduction to chi-square tests
    Example data
    One-way classification chi-square test
    Two-way classification chi-square test
    Chapter 7: Tests of difference: two unrelated samples
    Introduction to the t-and Mann-Whitney U tests
    Example data: dem bones
    t-Test
    Mann-Whitney U test
    Chapter 8: Tests of difference: two related samples
    Introduction to paired t- and Wilcoxon signed- rank tests
    Example data: big horn ewes
    Paired t-test
    Wilcoxon signed-rank test
    Chapter 9: Tests of difference: more than two samples
    Introduction to one-way and Kruskal-Wallis Anov atests
    Example data: nitrogen levels in reeds
    One-way Anova test
    Two-way Anova test
    Kruskal-Wallis test
    Model I and model II Anova
    Chapter 10: Tests of relationship: regression
    Introduction
    Example data: species richness
    Regression test
    Logistic regression
    Multiple regression
    Model I and model II regression
    Chapter 11: Tests of relationship: correlation
    Introduction to the Pearson and Spearman correlation tests
    Example data: eyeballs
    Pearson correlation test
    Spearman correlation test
    Comparison of correlation and regression
    Chapter 12: Introducing th General Linear Model
    Introduction to General Linear Model
    Example data: watered willow
    Testing using the General Linear Model
    Interaction
    Random factors and mixed models
    Types of sums of squares
    Getting the most out of GLM: Multiple models and model choice
    The general and generalized linear models compared
    Chapter 13: Choosing the right test and graph
    Introduction to choosing
    Which test?
    Which graph?
    Worked examples: graphs using SPSS
    How to report your results

    Több