Big Data in Radiation Oncology
Sorozatcím: Imaging in Medical Diagnosis and Therapy;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 56.99
-
27 226 Ft (25 930 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 5 445 Ft off)
- Kedvezményes ár 21 781 Ft (20 744 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
27 226 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó CRC Press
- Megjelenés dátuma 2021. március 31.
- ISBN 9780367780159
- Kötéstípus Puhakötés
- Terjedelem312 oldal
- Méret 254x178 mm
- Súly 580 g
- Nyelv angol 150
Kategóriák
Rövid leírás:
This book gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. Basic principles are covered early on, and clinical applications become the focus thereafter. A final section introduces emerging models for cancer prevention and detection.
TöbbHosszú leírás:
Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are:
- Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy.
- Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas.
- Discusses the fundamental principles and techniques for processing and analysis of big data.
- Address the use of big data in cancer prevention, detection, prognosis, and management.
- Provides practical guidance on implementation for clinicians and other stakeholders.
Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013.
Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.
TöbbTartalomjegyzék:
Series Preface
Preface
Acknowledgments
Editors
Contributors
1. Big data in radiation oncology: Opportunities and challenges
Jean-Emmanuel Bibault
2. Data standardization and informatics in radiation oncology
Charles S. Mayo
3. Storage and databases for big data
Tomas Skripcak, Uwe Just, Ida Schönfeld, Esther G.C. Troost, and Mechthild Krause
4. Machine learning for radiation oncology
Yi Luo and Issam El Naqa
5. Cloud computing for big data
Sepideh Almasi and Guillem Pratx
6. Big data statistical methods for radiation oncology
Yu Jiang, Vojtech Huser, and Shuangge Ma
7. From model-driven to knowledge- and data-based treatment planning
Morteza Mardani, Yong Yang, Yinyi Ye, Stephen Boyd, and Lei Xing
8. Using big data to improve safety and quality in radiation oncology
Eric Ford, Alan Kalet, and Mark Phillips
9. Tracking organ doses for patient safety in radiation therapy
Wazir Muhammad, Ying Liang, Gregory R. Hart, Bradley J. Nartowt, David A. Roffman, and Jun Deng
10. Big data and comparative effectiveness research in radiation oncology
Sunil W. Dutta, Daniel M. Trifiletti, and Timothy N. Showalter
11. Cancer registry and big data exchange
Zhenwei Shi, Leonard Wee, and Andre Dekker
12. Clinical and cultural challenges of big data in radiation oncology
Brandon Dyer, Shyam Rao, Yi Rong, Chris Sherman, Mildred Cho, Cort Buchholz, and Stanley Benedict
13. Radiogenomics
Barry S. Rosenstein, Gaurav Pandey, Corey W. Speers, Jung Hun Oh, Catharine M.L. West, and Charles S. Mayo
14. Radiomics and quantitative imaging
Dennis Mackin and Laurence E. Court
15. Radiotherapy outcomes modeling in the big data era
Joseph O. Deasy, Aditya P. Apte, Maria Thor, Jeho Jeong, Aditi Iyer, Jung Hun Oh, and Andrew Jackson
16. Multi-parameterized models for early cancer detection and prevention
Gregory R. Hart, David A. Roffman, Ying Liang, Bradley J. Nartowt, Wazir Muhammad, and Jun Deng
Index
Több
Fixing Bunions Without Surgery: How To Avoid Ending Up With Feet Like Your Mother
10 534 Ft
9 692 Ft
Selected Papers on Electric Speckle Pattern inte ? Principles and Practice: Principles and Practice
41 564 Ft
37 408 Ft