• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Big Data in Radiation Oncology

    Big Data in Radiation Oncology by Deng, Jun; Xing, Lei;

    Sorozatcím: Imaging in Medical Diagnosis and Therapy;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 56.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 226 Ft (25 930 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 445 Ft off)
      • Kedvezményes ár 21 781 Ft (20 744 Ft + 5% áfa)

    27 226 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    This book gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. Basic principles are covered early on, and clinical applications become the focus thereafter. A final section introduces emerging models for cancer prevention and detection.

    Több

    Hosszú leírás:

    Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are:







    • Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy.






    • Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas.






    • Discusses the fundamental principles and techniques for processing and analysis of big data.






    • Address the use of big data in cancer prevention, detection, prognosis, and management.






    • Provides practical guidance on implementation for clinicians and other stakeholders.




    Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013.



    Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.

    Több

    Tartalomjegyzék:

    Series Preface



    Preface



    Acknowledgments



    Editors



    Contributors



    1. Big data in radiation oncology: Opportunities and challenges



    Jean-Emmanuel Bibault



    2. Data standardization and informatics in radiation oncology



    Charles S. Mayo



    3. Storage and databases for big data



    Tomas Skripcak, Uwe Just, Ida Schönfeld, Esther G.C. Troost, and Mechthild Krause



    4. Machine learning for radiation oncology



    Yi Luo and Issam El Naqa



    5. Cloud computing for big data



    Sepideh Almasi and Guillem Pratx



    6. Big data statistical methods for radiation oncology



    Yu Jiang, Vojtech Huser, and Shuangge Ma



    7. From model-driven to knowledge- and data-based treatment planning



    Morteza Mardani, Yong Yang, Yinyi Ye, Stephen Boyd, and Lei Xing



    8. Using big data to improve safety and quality in radiation oncology



    Eric Ford, Alan Kalet, and Mark Phillips



    9. Tracking organ doses for patient safety in radiation therapy



    Wazir Muhammad, Ying Liang, Gregory R. Hart, Bradley J. Nartowt, David A. Roffman, and Jun Deng



    10. Big data and comparative effectiveness research in radiation oncology



    Sunil W. Dutta, Daniel M. Trifiletti, and Timothy N. Showalter



    11. Cancer registry and big data exchange



    Zhenwei Shi, Leonard Wee, and Andre Dekker



    12. Clinical and cultural challenges of big data in radiation oncology



    Brandon Dyer, Shyam Rao, Yi Rong, Chris Sherman, Mildred Cho, Cort Buchholz, and Stanley Benedict



    13. Radiogenomics



    Barry S. Rosenstein, Gaurav Pandey, Corey W. Speers, Jung Hun Oh, Catharine M.L. West, and Charles S. Mayo



    14. Radiomics and quantitative imaging



    Dennis Mackin and Laurence E. Court



    15. Radiotherapy outcomes modeling in the big data era



    Joseph O. Deasy, Aditya P. Apte, Maria Thor, Jeho Jeong, Aditi Iyer, Jung Hun Oh, and Andrew Jackson



    16. Multi-parameterized models for early cancer detection and prevention



    Gregory R. Hart, David A. Roffman, Ying Liang, Bradley J. Nartowt, Wazir Muhammad, and Jun Deng



    Index

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Big Data in Radiation Oncology

    Big Data in Radiation Oncology

    Deng, Jun; Xing, Lei; (ed.)

    27 226 Ft

    21 781 Ft

    20% %kedvezmény
    Big Data in Radiation Oncology

    The Routledge International Handbook of Comparative Psychology

    Freeberg, Todd M.; Ridley, Amanda R.; d’Ettorre, Patrizia; (ed.)

    102 716 Ft

    82 173 Ft

    Big Data in Radiation Oncology

    Philosophy of Writing

    Arndt, David

    23 887 Ft

    20 782 Ft

    20% %kedvezmény
    Big Data in Radiation Oncology

    Nuclear Weapons And Foreign Policy

    Kissinger, Henry A;

    20 060 Ft

    16 048 Ft

    Big Data in Radiation Oncology

    Selected Papers on Electric Speckle Pattern inte ? Principles and Practice: Principles and Practice

    Meinlschmidt, Peter; Hinsch, Klaus D.; Sirohi, Rajpal S.;

    41 564 Ft

    37 408 Ft

    Big Data in Radiation Oncology

    Your Brain Is a Lump of Goo

    Ben-Barak, Idan

    6 679 Ft

    6 145 Ft

    20% %kedvezmény
    Big Data in Radiation Oncology

    Recent Trends in Materials and Devices: Proceedings ICRTMD 2015

    Jain, Vinod Kumar; Rattan, Sunita; Verma, Abhishek

    88 752 Ft

    71 002 Ft

    Big Data in Radiation Oncology

    The Cat Who Cracked a Cold Case

    Shearer, L T;

    8 116 Ft

    6 656 Ft

    next