Arithmetic and Ontology
A Non-Realist Philosophy of Arithmetic. Edited by Pieranna Garavaso
Sorozatcím: Poznań Studies in the Philosophy of the Sciences and the Humanities; 90;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 117.00
-
48 525 Ft (46 215 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 3 882 Ft off)
- Kedvezményes ár 44 644 Ft (42 518 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
48 525 Ft
Beszerezhetőség
Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó BRILL
- Megjelenés dátuma 2006. január 1.
- ISBN 9789042020474
- Kötéstípus Keménykötés
- Terjedelem393 oldal
- Méret 230x155 mm
- Súly 788 g
- Nyelv angol 0
Kategóriák
Rövid leírás:
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors? account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
TöbbHosszú leírás:
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors? account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
TöbbTartalomjegyzék:
Acknowledgments
Editor?s Introduction
Philip HUGLY and Charles SAYWARD: Arithmetic and Ontology a Non
-Realist Philosophy of Arithmetic
Preface
Analytical
Chapter 1. Introduction
Part One: Beginning with Frege
Chapter 2. Notes to Grundlagen
Chapter 3. Objectivism and Realism in Frege?s Philosophy of Arithmetic
Part Two: Arithmetic and Non
-Realism
Chapter 4. The Peano Axioms
Chapter 5. Existence, Number, and Realism
Part Three: Necessity and Rules
Chapter 6. Arithmetic and Necessity
Chapter 7. Arithmetic and Rules
Part Four: The Three Theses
Chapter 8. Thesis One
Chapter 9. Thesis Two
Chapter 10. Thesis Three
References
Commentaries
Colin Cheyne, Numbers, Reference, and Abstraction
Sanford Shieh, What Is Non
-Realism about Arithmetic?
Jean Paul Van Bendegem, Non
-Realism, Nominalism and Strict Fi
-nitism. The Sheer Complexity of It All
Replies to Commentaries
Philip Hugly and Charles Sayward, Replies to Commentaries
About the Contributors
Index
Arithmetic and Ontology: A Non-Realist Philosophy of Arithmetic. Edited by Pieranna Garavaso
48 525 Ft
44 644 Ft
EMG Waveforms: Video Companion to Electromyography and Neuromusular Disorders
41 056 Ft
35 719 Ft