• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • An Introduction to Generalized Linear Models

    An Introduction to Generalized Linear Models by Dunteman, George Henry; Ho, Moon-Ho R.;

    Sorozatcím: Quantitative Applications in the Social Sciences; 145;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 36.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        17 671 Ft (16 830 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 3 534 Ft off)
      • Kedvezményes ár 14 137 Ft (13 464 Ft + 5% áfa)

    17 671 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Do you have data that is not normally distributed and don't know how to analyze it using generalized linear models (GLM)? Beginning with a discussion of fundamental statistical modeling concepts in a multiple regression framework, the authors extend these concepts to GLM and demonstrate the similarity of various regression models to GLM. Each procedure is illustrated using real life data sets. The book provides an accessible but thorough introduction to GLM, exponential family distribution, and maximum likelihood estimation; includes discussion on checking model adequacy and description on how to use SAS to fit GLM; and describes the connection between survival analysis and GLM. It is an ideal text for social science researchers who do not have a strong statistical background, but would like to learn more advanced techniques having taken an introductory course covering regression analysis.

    Több

    Hosszú leírás:

    Do you have data that is not normally distributed and don't know how to analyze it using generalized linear models (GLM)? Beginning with a discussion of fundamental statistical modeling concepts in a multiple regression framework, the authors extend these concepts to GLM (including Poisson regression. logistic regression, and proportional hazards models) and demonstrate the similarity of various regression models to GLM. Each procedure is illustrated using real life data sets, and the computer instructions and results will be presented for each example. Throughout the book, there is an emphasis on link functions and error distribution and how the model specifications translate into likelihood functions that can, through maximum likelihood estimation be used to estimate the regression parameters and their associated standard errors. This book provides readers with basic modeling principles that are applicable to a wide variety of situations.

    Key Features:

    - Provides an accessible but thorough introduction to GLM, exponential family distribution, and maximum likelihood estimation

    - Includes discussion on checking model adequacy and description on how to use SAS to fit GLM

    - Describes the connection between survival analysis and GLM

     This book is an ideal text for social science researchers who do not have a strong statistical background, but would like to learn more advanced techniques having taken an introductory course covering regression analysis.


    Több

    Tartalomjegyzék:

    List of Figures and Tables
    Series Editor’s Introduction
    Acknowledgments
    1. Generalized Linear Models
    2. Some Basic Modeling Concepts
    Categorical Independent Variables
    Essential Components of Regression Modeling
    3. Classical Multiple Regression Model
    Assumptions and Modeling Approach
    Results of Regression Analysis
    Multiple Correlation
    Testing Hypotheses
    4. Fundamentals of Generalized Linear Modeling
    Exponential Family of Distributions
    Classical Normal Regression
    Logistic Regression
    Poisson Regression
    Proportional Hazards Survival Model
    5. Maximum Likelihood Estimation
    6. Deviance and Goodness of Fit
    Using Deviances to Test Statistical Hypotheses
    Goodness of Fit
    Assessing Goodness of Fit by Residual Analysis
    7. Logistic Regression
    Example of Logistic Regression
    8. Poisson Regression
    Example of Poisson Regression Model
    9. Survival Analysis
    Survival Time Distributions
    Exponential Survival Model
    Example of Exponential Survival Model
    Conclusions
    Appendix
    References
    Index
    About the Authors

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    An Introduction to Generalized Linear Models

    An Introduction to Generalized Linear Models

    Dunteman, George Henry; Ho, Moon-Ho R.;

    17 671 Ft

    14 137 Ft

    20% %kedvezmény
    An Introduction to Generalized Linear Models

    Advanced Applications of Blockchain Technology

    Kim, Shiho; Deka, Ganesh Chandra

    75 438 Ft

    60 351 Ft

    An Introduction to Generalized Linear Models

    An Introduction to Probability and Statistics

    Rohatgi, Vijay K.; Saleh, A. K. Md. Ehsanes;

    64 974 Ft

    58 477 Ft

    20% %kedvezmény
    An Introduction to Generalized Linear Models

    Emerging Trends and Applications of Deep Learning for Biomedical Data Analysis

    Sharma, Smita; Balusamy, Balamurugan; Ramesh, S.; Bashir, Ali Kashif

    71 332 Ft

    57 066 Ft

    An Introduction to Generalized Linear Models

    Probability and Statistical Inference 2e

    Bartoszynski, R;

    75 460 Ft

    67 914 Ft

    An Introduction to Generalized Linear Models

    Judge Dredd: The Complete Case Files 45

    Wagner, John; Rennie, Gordon; Morrison, Robbie; Mills, Pat; Grant, Alan;

    11 938 Ft

    10 148 Ft

    next