Advanced Machine Learning with Evolutionary and Metaheuristic Techniques
Sorozatcím: Computational Intelligence Methods and Applications;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 213.99
-
88 752 Ft (84 526 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 17 750 Ft off)
- Kedvezményes ár 71 002 Ft (67 621 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
88 752 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2024
- Kiadó Springer Nature Singapore
- Megjelenés dátuma 2024. április 23.
- Kötetek száma 1 pieces, Book
- ISBN 9789819997176
- Kötéstípus Keménykötés
- Terjedelem362 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk X, 362 p. 1 illus. Illustrations, black & white 547
Kategóriák
Hosszú leírás:
Tartalomjegyzék:
Chapter 1. From Evolution to Intelligence: Exploring the Synergy of Optimization and Machine Learning.- Chapter 2. Metaheuristic and Evolutionary Algorithms in Ex-plainable Artificial Intelligence.- Chapter 3. Evolutionary Dynamic Optimization and Machine Learning.- Chapter 4. Evolutionary Techniques in making Efficient Deep-Learning Framework: A Review.- Chapter 5. Integrating Particle Swarm Optimization with Reinforcement Learning: A Promising Approach to Optimization.- Chapter 6. Synergies between Natural Language Processing and Swarm Intelligence Optimization: A Comprehensive Overview.- Chapter 7. Heuristics-based Hyperparameter Tuning for Transfer Learning Algorithms.- Chapter 8. Machine Learning Applications of Evolutionary and Metaheuristic Algorithms.- Chapter 9. Machine Learning Assisted Metaheuristic Based Optimization of Mixed Suspension Mixed Product Removal Process.- Chapter 10. Machine Learning based Intelligent RPL Attack Detection System for IoT Networks.- Chapter 11. Shallow and Deep Evolutionary Neural Networks applications in Solid Mechanics.- Chapter 12. Polymer and nanocomposite Informatics: Recent Applications of Artificial Intelligence and Data Repositories.- Chapter 13. Synergistic combination of machine learning and evolutionary and heuristic algorithms for handling imbalance in biological and biomedical datasets.