Applied Meta-Analysis with R and Stata
 
Product details:

ISBN13:9780367709341
ISBN10:0367709341
Binding:Paperback
No. of pages:456 pages
Size:234x156 mm
Weight:453 g
Language:English
Illustrations: 63 Illustrations, black & white; 23 Tables, black & white
614
Category:

Applied Meta-Analysis with R and Stata

 
Edition number: 2
Publisher: Chapman and Hall
Date of Publication:
 
Normal price:

Publisher's listprice:
GBP 45.99
Estimated price in HUF:
22 213 HUF (21 155 HUF + 5% VAT)
Why estimated?
 
Your price:

19 991 (19 040 HUF + 5% VAT )
discount is: 10% (approx 2 221 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, this book shows how to implement statistical meta-analysis methods to real data using R and Stata.

Long description:

Review of the First Edition:


The authors strive to reduce theory to a minimum, which makes it a self-learning text that is comprehensible for biologists, physicians, etc. who lack an advanced mathematics background. Unlike in many other textbooks, R is not introduced with meaningless toy examples; instead the reader is taken by the hand and shown around some analyses, graphics, and simulations directly relating to meta-analysis? A useful hands-on guide for practitioners who want to familiarize themselves with the fundamentals of meta-analysis and get started without having to plough through theorems and proofs.


?Journal of Applied Statistics


Statistical Meta-Analysis with R and Stata, Second Edition provides a thorough presentation of statistical meta-analyses (MA) with step-by-step implementations using R/Stata. The authors develop analysis step by step using appropriate R/Stata functions, which enables readers to gain an understanding of meta-analysis methods and R/Stata implementation so that they can use these two popular software packages to analyze their own meta-data. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R/Stata packages and functions.



What?s New in the Second Edition:




  • Adds Stata programs along with the R programs for meta-analysis



  • Updates all the statistical meta-analyses with R/Stata programs



  • Covers fixed-effects and random-effects MA, meta-regression, MA with rare-event, and MA-IPD vs MA-SS



  • Adds five new chapters on multivariate MA, publication bias, missing data in MA, MA in evaluating diagnostic accuracy, and network MA



Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R or Stata) in public health, medical research, governmental agencies, and the pharmaceutical industry.



"The strengths of the second edition continue those of the first edition... A summary and discussion close the chapters, providing professionally generous recommendations for additional reading, software, and websites. Clearly, an applied hands-on approach intended to facilitate quickly moving readers to performing informed meta-data analyses."
- Thomas E. Bradstreet, Journal of Biopharmaceutical Statistics, July 2022

Table of Contents:
1. Introduction to R and Stata for Meta-Analysis
2. Research Protocol for Meta-Analyses
3. Fixed-E ects and Random-E ects in Meta-Analysis
4. Meta-Analysis with Binary Data
5. Meta-Analysis for Continuous Data
6. Heterogeneity in Meta-Analysis
7. Meta-Regression
8. Multivariate Meta-Analysis
9. Publication Bias in Meta-Analysis
10. Strategies to Handle Missing Data in Meta-Analysis
11. Meta-Analysis for Evaluating Diagnostic Accuracy
12. Network Meta-Analysis
13. Meta-Analysis for Rare Events
14. Meta-Analyses with Individual Patient-Level Data versus Summary Statistics
15. Other R/Stata Packages for Meta-Analysis