• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Spatial Data Analysis in Ecology and Agriculture Using R

    Spatial Data Analysis in Ecology and Agriculture Using R by Plant, Richard E.;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 230.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        109 882 Ft (104 650 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 21 976 Ft off)
      • Kedvezményes ár 87 906 Ft (83 720 Ft + 5% áfa)

    109 882 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    This third edition explores both the leading software tools, methodology of spatial data analysis and the suite of R, for the analysis of vector and raster data. The book's practical coverage of spatial statistics, real-world examples and user-friendly approach make this an essential textbook for ecology and agriculture graduate students.

    Több

    Hosszú leírás:

    Since the publication of the second edition of Richard Plant’s bestselling textbook Spatial Data Analysis in Ecology and Agriculture Using R, the methodology of spatial data analysis and the suite of R tools for carrying out this analysis have evolved dramatically. This third edition thus explores both the leading software tools for the analysis of vector and raster data; the first based on sf and associated libraries, the second based on the terra package as it has evolved out of the earlier raster package.



    Further, within the methodology of spatial data analysis, the set of methods available has significantly expanded. This book adds several of the most popular and useful, including machine learning methods in spatial data analysis, the use of simulation methods in spatial data analysis, and a new chapter on the analysis of remotely sensed data. These methods are critically compared in the context of addressing the particular goals of the research project.



    The book’s practical coverage of spatial statistics, real-world examples, and user-friendly approach make this an essential textbook for ecology and agriculture graduate students. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions.



    Additional material to accompany the book, including a review of mathematical concepts, the full data sets, and a brief introduction to geographic coordinate systems, can be accessed via the Instructor Resources link on www.routledge.com.



    "Given the widespread availability of large, georeferenced datasets, now is the time for analysts to consider specialized statistical techniques to accommodate spatial autocorrelation and reach valid conclusions about relationships between various attributes. Richard Plant’s third edition of “Spatial Analysis in Ecology and Agriculture using R” revisits the research progress in the field of spatial statistics, covering a variety of modeling approaches that will prove to be highly useful to the intelligent non-specialist. Methods are explained in great detail and illustrated with updated R computer code and results from several different application areas. Scientists, researchers, and related professionals who work with georeferenced data will benefit greatly from this highly instructive, readable book."


    Dan S. Long, Research Agronomist (Emeritus), USDA-ARS Soil and Water Conservation Research, USA

    Több

    Tartalomjegyzék:

     1. Working with Spatial Data 2. The R Programming Environment 3. Statistical Properties of Spatially Autocorrelated Data 4. Measures of Spatial Autocorrelation 5. Sampling and Data Collection 6. Acquisition and Analysis of Remotely Sensed Data 7. Preparing Spatial Data for Analysis 8. Preliminary Exploration of Spatial Data 9. Non-Spatial Methods: Linear and Additive Models 10. Variance Estimation, the Effective Sample Size, and the Bootstrap 11. Measures of Bivariate Association between Two Spatial Variables 12. Machine Learning Methods 1: Recursive Partitioning 13. Machine Learning Methods 2: Supervised Classification Methods: 14. The Mixed Model 15. Regression Models for Spatially Autocorrelated Data 16. Assembling Conclusions. Appendix A. Review of Mathematical Concepts

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Spatial Data Analysis in Ecology and Agriculture Using R

    A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)

    Hair, Joe, Jr.; Hult, G. Tomas M.; Ringle, Christian M.; Sarstedt, Marko;

    28 665 Ft

    22 932 Ft

    Spatial Data Analysis in Ecology and Agriculture Using R

    Principles of Computational Modelling in Neuroscience

    Sterratt, David; Graham, Bruce; Gillies, Andrew;

    26 271 Ft

    23 644 Ft

    next