• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application

    Small Sample Modelling Based on Deep and Broad Forest Regression by Yu, Wen; Tang, Jian; Qiao, Junfei;

    Theory and Industrial Application

    Sorozatcím: Emerging Methodologies and Applications in Modelling, Identification and Control;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 172.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        71 747 Ft (68 331 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 14 349 Ft off)
      • Kedvezményes ár 57 398 Ft (54 665 Ft + 5% áfa)

    71 747 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application delves into tree-structured methods in the industrial sector, encompassing classical ensemble learning, tree-structured deep forest classification, and broad learning systems with neural networks. It introduces an innovative deep/broad learning algorithm for small-sample industrial modeling tasks. The book is divided into two parts: methodology and practical application in dioxin emission modeling. Methodology sections include Preliminaries, Deep Forest Regression, Broad Forest Regression, and Fuzzy Forest Regression. The application part focuses on modeling dioxin emissions in municipal solid waste incineration. Throughout, various tree-structured strategies are presented, and the authors provide software systems for validating these methods. This book is suitable for advanced undergraduates, graduate engineering students, and practicing engineers looking for self-study resources.


    • Introduces a novel deep and broad regression algorithm specifically designed for small sample industrial modeling. It covers Deep Forest Regression for Industrial Modeling, Broad Forest Regression for Industrial Modeling, and Fuzzy Forest Regression for Industrial Modeling
    • Delves into recent results concerning the hot topic of deep and broad learning using non-neuron units for regression and the interpretability of fuzzy trees. These innovative methods are supported by the use of multi-dimensional benchmark data, providing solid confirmation
    • Offers a real application case for industrial modeling by focusing on dioxin emission concentration. This case revolves around a strict controlled environment index of the municipal solid waste incineration (MSWI) process. The book provides offline modeling techniques such as improved deep forest regression and simplified deep forest regression

    Több

    Tartalomjegyzék:

    PART I Methods
    1. Preliminaries
    2. Deep Forest Regression for Industrial Modeling
    3. Broad Forest Regression for Industrial Modeling
    4. Fuzzy Forest Regression for Industrial Modeling

    PART II Application to Dioxin Emission Modeling
    5. Deep Forest Regression Based on Feature Reduction and Feature Enhancement
    6. Simplified Deep Forest Regression with Combined Feature Selection and Residual Error Fitting
    7. Online Fuzzy Broad Forest Regression

    Több
    Mostanában megtekintett
    previous
    Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application

    Brain Computation as Hierarchical Abstraction

    Ballard, Dana H.; Sejnowski, Terrence J.; Poggio, Tomaso A.;

    19 110 Ft

    17 199 Ft

    20% %kedvezmény
    Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application

    Mathematical Optimization for Efficient and Robust Energy Networks

    Hadjidimitriou, Natalia Selini; Frangioni, Antonio; Koch, Thorsten; Lodi, Andrea

    44 374 Ft

    35 499 Ft

    20% %kedvezmény
    Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application

    Inverse Combinatorial Optimization Problems

    Guan, Xiucui; Pardalos, Panos M.; Zhang, Binwu

    62 125 Ft

    49 700 Ft

    next