• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    Robustness Tests for Quantitative Research by Neumayer, Eric; Pl;

    Causal Inference with Observational Data

    Sorozatcím: Methodological Tools in the Social Sciences;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 25.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        11 943 Ft (11 375 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 2 389 Ft off)
      • Kedvezményes ár 9 555 Ft (9 100 Ft + 5% áfa)

    11 943 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    This highly accessible book presents robustness testing as the methodology for conducting quantitative analyses in the presence of model uncertainty.

    Több

    Hosszú leírás:

    The uncertainty that researchers face in specifying their estimation model threatens the validity of their inferences. In regression analyses of observational data, the 'true model' remains unknown, and researchers face a choice between plausible alternative specifications. Robustness testing allows researchers to explore the stability of their main estimates to plausible variations in model specifications. This highly accessible book presents the logic of robustness testing, provides an operational definition of robustness that can be applied in all quantitative research, and introduces readers to diverse types of robustness tests. Focusing on each dimension of model uncertainty in separate chapters, the authors provide a systematic overview of existing tests and develop many new ones. Whether it be uncertainty about the population or sample, measurement, the set of explanatory variables and their functional form, causal or temporal heterogeneity, or effect dynamics or spatial dependence, this book provides guidance and offers tests that researchers from across the social sciences can employ in their own research.

    'Neumayer and Pl&&&252;mper have made an impressive contribution to research methodology. Rich in innovation and insight, Robustness Tests for Quantitative Research shows social scientists the way forward for improving the quality of inference with observational data. A must-read!' Harold D. Clarke, Ashbel Smith Professor, University of Texas, Dallas

    Több

    Tartalomjegyzék:

    1. Introduction; Part I. Robustness - A Conceptual Framework: 2. Causal complexity and the limits to inferential validity; 3. The logic of robustness testing; 4. The concept of robustness; 5. A typology of robustness tests; 6. Alternatives to robustness testing?; Part II. Robustness Tests and the Dimensions of Model Uncertainty: 7. Population and sample; 8. Concept validity and measurement; 9. Explanatory and omitted variables; 10. Functional forms beyond default; 11. Causal heterogeneity and context conditionality; 12. Structural change as temporal heterogeneity; 13. Effect dynamics; 14. Spatial correlation and dependence; 15. Conclusion.

    Több
    Mostanában megtekintett
    previous
    20% %kedvezmény
    Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    A Practical Guide to Theoretical Frameworks for Social Science Research

    Bingham, Andrea J.; Mitchell, Robert; Carter, Daria S.;

    21 971 Ft

    17 577 Ft

    20% %kedvezmény
    Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    Proceedings of International Conference on Communication and Computational Technologies: ICCCT 2025, Volume 3

    Kumar, Sandeep; Hiranwal, Saroj; Chouhan, Lokesh; Chaudhary, Naveen Kumar

    110 941 Ft

    88 753 Ft

    Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    Response of Vigna radiata L. to application of Phosphorus and Sulphur: A study in alluvial soils

    Kumar, Rakesh; Tripathi, Sachchidanand; Mishra, Pankaj Kumar;

    34 382 Ft

    32 663 Ft

    20% %kedvezmény
    Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    Handbook of Research Methods and Applications for Social Movements

    Cox, Laurence; Szolucha, Anna; Arribas Lozano, Alberto; Chattopadhyay, Sutapa; (ed.)

    108 449 Ft

    86 759 Ft

    Robustness Tests for Quantitative Research: Causal Inference with Observational Data

    Manual of Romance Morphosyntax and Syntax

    Dufter, Andreas; Stark, Elisabeth; (ed.)

    124 010 Ft

    117 810 Ft

    next