Reinforcement Learning for Cyber-Physical Systems
with Cybersecurity Case Studies
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 44.99
-
21 493 Ft (20 470 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 4 299 Ft off)
- Kedvezményes ár 17 195 Ft (16 376 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
21 493 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1
- Kiadó Chapman and Hall
- Megjelenés dátuma 2020. szeptember 30.
- ISBN 9780367656638
- Kötéstípus Puhakötés
- Terjedelem256 oldal
- Méret 234x156 mm
- Súly 453 g
- Nyelv angol 100
Kategóriák
Rövid leírás:
This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
TöbbHosszú leírás:
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids.
However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques.
Features
- Introduces reinforcement learning, including advanced topics in RL
- Applies reinforcement learning to cyber-physical systems and cybersecurity
- Contains state-of-the-art examples and exercises in each chapter
- Provides two cybersecurity case studies
Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.
TöbbTartalomjegyzék:
Section I Introduction
Chapter 1 Overview of Reinforcement Learning
Chapter 2 Overview of CyberPhysical Systems and Cybersecurity
Section II Reinforcement Learning for Cyber-Physical Systems
Chapter 3 Reinforcement Learning Problems
Chapter 4 Modelbased Reinforcement Learning
Chapter 5 Modelfree Reinforcement Learning
Chapter 6 Deep Reinforcement Learning
Section III Case Studies
Chapter 7 Reinforcement Learning for Cybersecurity
Chapter 8 Case Study: Online CyberAttack Detection in Smart Grid
Chapter 9 Case Study: Defeat Maninthemiddle Attack
Több
Getting Started with DOS
5 971 Ft
5 374 Ft