• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Mathematics: Its Content, Methods and Meaning

    Mathematics by Aleksandrov, A. D.;

    Its Content, Methods and Meaning

    Sorozatcím: Dover Books on Mathematics;

      • Kiadói listaár GBP 35.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        17 194 Ft (16 375 Ft + 5% áfa)

    Beszerezhetőség

    Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Dover Publications Inc.
    • Megjelenés dátuma 2003. március 28.

    • ISBN 9780486409160
    • Kötéstípus Puhakötés
    • Terjedelem1120 oldal
    • Méret 214x135 mm
    • Súly 1112 g
    • Nyelv angol
    • 0

    Kategóriák

    Rövid leírás:

    Major survey offers comprehensive, coherent discussions of analytic geometry, algebra, differential equations, calculus of variations, functions of a complex variable, prime numbers, linear and non-Euclidean geometry, topology, functional analysis, more. 1963 edition.

    Több

    Hosszú leírás:

    This major survey features the work of 18 outstanding mathematicians. Primary subjects include analytic geometry, algebra, ordinary and partial differential equations, the calculus of variations, functions of a complex variable, prime numbers, and theories of probability and functions. Other topics include linear and non-Euclidean geometry, topology, functional analysis, more. 1963 edition.

    Major survey offers comprehensive, coherent discussions of analytic geometry, algebra, differential equations, calculus of variations, functions of a complex variable, prime numbers, linear and non-Euclidean geometry, topology, functional analysis, more. 1963 edition.

    Több

    Tartalomjegyzék:

    Volume 1. Part 1
    Chapter 1. A general view of mathematics (A.D. Aleksandrov)
    1. The characteristic features of mathematics
    2. Arithmetic
    3. Geometry
    4. Arithmetic and geometry
    5. The age of elementary mathematics
    6. Mathematics of variable magnitudes
    7. Contemporary mathematics
    Suggested reading
    Chapter 2. Analysis (M.A. Lavrent'ev and S.M. Nikol'skii)
    1. Introduction
    2. Function
    3. Limits
    4. Continuous functions
    5. Derivative
    6. Rules for differentiation
    7. Maximum and minimum; investigation of the graphs of functions
    8. Increment and differential of a function
    9. Taylor's formula
    10. Integral
    11. Indefinite integrals; the technique of integration
    12. Functions of several variables
    13. Generalizations of the concept of integral
    14. Series
    Suggested reading
    Part 2.
    Chapter 3. Analytic Geometry (B. N. Delone)
    1. Introduction
    2. Descartes' two fundamental concepts
    3. Elementary problems
    4. Discussion of curves represented by first
    - and second
    -degree equations
    5. Descartes' method of solving third
    - and fourth
    -degree algebraic equations
    6. Newton's general theory of diameters
    7. Ellipse, hyperbola, and parabola
    8. The reduction of the general second
    -degree equation to canonical form
    9. The representation of forces, velocities, and accelerations by triples of numbers; theory of vectors
    10. Analytic geometry in space; equations of a surface in space and equations of a curve
    11. Affine and orthogonal transformations
    12. Theory of invariants
    13. Projective geometry
    14. Lorentz transformations
    Conclusions; Suggested reading
    Chapter 4. Algebra: Theory of algebraic equations (B. N. Delone)
    1. Introduction
    2. Algebraic solution of an equation
    3. The fundamental theorem of algebra
    4. Investigation of the distribution of the roots of a polynomial on the complex plane
    5. Approximate calculation of roots
    Suggested reading
    Chapter 5. Ordinary differential equations (I. G. Petrovskii)
    1. Introduction
    2. Linear differential equations with constant coefficients
    3. Some general remarks on the formation and solution of differential equations
    4. Geometric interpretation of the problem of integrating differential equations; generalization of the problem
    5. Existence and uniqueness of the solution of a differential equation; approximate solution of equations
    6. Singular points
    7. Qualitative theory of ordinary differential equations
    Suggested reading
    Volume 2 Part 3
    Chapter 6. Partial differential equations (S. L. Sobolev and O. A. Ladyzenskaja)
    1. Introduction
    2. The simplest equations of mathematical physics
    3. Initial
    -value and boundary
    -value problems; uniqueness of a solution
    4. The propagation of waves
    5. Methods of constructing solutions
    6. Generalized solutions
    Suggested reading
    Chapter 7. Curves and surfaces (A. D. Aleksandrov)
    1. Topics and methods in the theory of curves and surfaces
    2. The theory of curves
    3. Basic concepts in the theory of surfaces
    4. Intrinsic geometry and deformation of surfaces
    5. New Developments in the theory of curves and surfaces
    Suggested reading
    Chapter 8. The calculus of variations (V. I. Krylov)
    1. Introduction
    2. The differential equations of the calculus of variations
    3. Methods of approximate solution of problems in the calculus of variations
    Suggested reading
    Chapter 9. Functions of a complex variable (M. V. Keldys)
    1. Complex numbers and functions of a complex variable
    2. The connection between functions of a complex variable and the problems of mathematical physics
    3. The connection of functions of a complex variable with geometry
    4. The line integral; Cauchy's formula and its corollaries
    5. Uniqueness properties and analytic continuation
    6. Conclusion
    Suggested reading
    Part 4.
    Chapter 10. Prime numbers (K. K. Mardzanisvili and A. B. Postnikov)
    1. The study of the theory of numbers
    2. The investigation of problems concerning prime numbers
    3. Chebyshev's method
    4. Vinogradov's method
    5. Decomposition of integers into the sum of two squares; complex integers
    Suggested reading
    Chapter 11. The theory of probability (A. N. Kolmogorov)
    1. The laws of probability
    2. The axioms and basic formulas of the elementary theory of probability
    3. The law of large numbers and limit theorems
    4. Further remarks on the basic concepts of the theory of probability
    5. Deterministic and random processes
    6. Random processes of Markov type
    Suggested reading
    Chapter 12. Approximations of functions (S. M. Nikol'skii)
    1. Introduction
    2. Interpolation polynomials
    3. Approximation of definite integrals
    4. The Chebyshev concept of best uniform approximation
    5. The Chebyshev polynomials deviating least from zero
    6. The theorem of Weierstrass; the best approximation to a function as related to its properties of differentiability
    7. Fourier series
    8. Approximation in the sense of the mean square
    Suggested reading
    Chapter 13. Approximation methods and computing techniques (V. I. Krylov)
    1. Approximation and numerical methods
    2. The simplest auxiliary means of computation
    Suggested reading
    Chapter 14. Electronic computing machines (S. A. Lebedev and L. V. Kantorovich)
    1. Purposes and basic principles of the operation of electronic computers
    2. Programming and coding for high
    -speed electronic machines
    3. Technical principles of the various units of a high
    -speed computing machine
    4. Prospects for the development and use of electronic computing machines
    Suggested reading
    Volume 3. Part 5.
    Chapter 15. Theory of functions of a real variable (S. B. Stechkin)
    1. Introduction
    2. Sets
    3. Real Numbers
    4. Point sets
    5. Measure of sets
    6. The Lebesque integral
    Suggested reading
    Chapter 16. Linear algebra (D. K. Faddeev)
    1. The scope of linear algebra and its apparatus
    2. Linear spaces
    3. Systems of linear equations
    4. Linear transformations
    5. Quadratic forms
    6. Functions of matrices and some of their applications
    Suggested reading
    Chapter 17. Non
    -Euclidean geometry (A. D. Aleksandrov)
    1. History of Euclid's postulate
    2. The solution of Lobachevskii
    3. Lobachevskii geometry
    4. The real meaning of Lobachevskii geometry
    5. The axioms of geometry; their verification in the present case
    6. Separation of independent geometric theories from Euclidean geometry
    7. Many
    -dimensional spaces
    8. Generalization of the scope of geometry
    9. Riemannian geometry
    10. Abstract geometry and the real space
    Suggested reading
    Part 6.
    Chapter 18. Topology (P. S. Aleksandrov)
    1. The object of topology
    2. Surfaces
    3. Manifolds
    4. The combinatorial method
    5. Vector fields
    6. The development of topology
    7. Metric and topological space
    Suggested reading
    Chapter 19. Functional analysis (I. M. Gelfand)
    1. n
    -dimensional space
    2. Hilbert space (Infinite
    -dimensional space)<
    4. Integral equations
    5. Linear operators and further developments of functional analysis
    Suggested reading
    Chapter 20. Groups and other algebraic systems (A. I. Malcev)
    1. Introduction
    2. Symmetry and transformations
    3. Groups of transformations
    4. Fedorov groups (crystallographic groups)
    5. Galois groups
    6. Fundamental concepts of the general theory of groups
    7. Continuous groups
    8. Fundamental groups
    9. Representations and characters of groups
    10. The general theory of groups
    11. Hypercomplex numbers
    12. Associative algebras
    13. Lie algebras
    14. Rings
    15. Lattices
    16. Other algebraic systems
    Suggested reading
    Index

    Több