• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Machine Learning Technologies on Energy Economics and Finance: Energy and Sustainable Analytics, Volume 1

    Machine Learning Technologies on Energy Economics and Finance by Abedin, Mohammad Zoynul; Yong, Wang;

    Energy and Sustainable Analytics, Volume 1

    Sorozatcím: International Series in Operations Research & Management Science; 367;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 192.59
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        79 876 Ft (76 073 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 15 975 Ft off)
      • Kedvezményes ár 63 901 Ft (60 858 Ft + 5% áfa)

    79 876 Ft

    db

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    "

    This book explores the latest innovations in energy economics and finance, with a particular focus on the role of machine learning algorithms in advancing the energy sector.

    It examines key factors shaping this field, including market structures, regulatory frameworks, environmental impacts, and the dynamics of the global energy market. It discusses the critical application of machine learning (ML) in energy financing, introducing predictive tools for forecasting energy prices across various sectors—such as crude oil, electricity, fuelwood, solar, and natural gas. It also addresses how ML can predict investor behavior and assess the efficiency of energy markets, with a focus on both the opportunities and challenges in renewable energy and energy finance.

    This book serves as a comprehensive guide for academics, practitioners, financial managers, stakeholders, government officials, and policymakers who seek strategies to enhance energy systems, reduce costs and uncertainties, and optimize revenue for economic growth. This is the first volume of a two-volume set.

    "

    Több

    Tartalomjegyzék:

    "

    Analyzing Global Energy Patterns: Clustering Countries and Predicting Trends Towards Achieving Sustainable Development Goals.- Access to Energy Finance: Development of Renewable Energy in Bangladesh.- Explainable AI in Energy Forecasting: Understanding Natural Gas Consumption through Interpretable Machine Learning Models.- An Extensive Statistical Analysis of Time Series Modelling and Forecasting of Crude Oil Prices.- Comparative analysis of selected emerging economies energy transition scenario: A transition pathway for the continental neighbours.- Forecasting Energy Prices using Machine Learning Algorithms: A Comparative Analysis.- An Evidence-based Explainable AI Approach for Analyzing the Influence of CO2 Emissions on Sustainable Economic Growth.- BLDAR: A Blending Ensemble Learning Approach for Primary Energy Consumption Analysis.- Analyzing Biogas Production in Livestock Farms Using Explainable Machine Learning.- Application of Machine Learning Techniques in the Analysis of Sustainable Energy Finance.- Machine Learning and Deep Learning Strategies for Sustainable Renewable Energy: A Comprehensive Review.- Efficient Gasoline Spot Price Prediction using Hyperparameter Optimization and Ensemble Machine Learning Approach.- The Implications of Energy Transition and Development of Renewable Energy on Sustainable Development Goals of Two Asian Tigers.

    "

    Több