Machine Learning Control ? Taming Nonlinear Dynamics and Turbulence
Sorozatcím: Fluid Mechanics and Its Applications; 116;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 96.29
-
39 936 Ft (38 034 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 7 987 Ft off)
- Kedvezményes ár 31 949 Ft (30 427 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
39 936 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma Softcover reprint of the original 1st ed. 2017
- Kiadó Springer International Publishing
- Megjelenés dátuma 2018. április 22.
- Kötetek száma 1 pieces, Previously published in hardcover
- ISBN 9783319821405
- Kötéstípus Puhakötés
- Lásd még 9783319406237
- Terjedelem211 oldal
- Méret 235x155 mm
- Súly 3999 g
- Nyelv angol
- Illusztrációk XX, 211 p. 73 illus., 58 illus. in color. Illustrations, black & white 0
Kategóriák
Hosszú leírás:
This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
TöbbTartalomjegyzék:
Preface.- 1 Introduction.- 1.1 Feedback in engineering and living systems.- 1.2 Benefits of feedback control.- 1.3 Challenges of feedback control.- 1.4 Feedback turbulence control is a grand challenge problem.- 1.5 Nature teaches us the control design.- 1.6 Outline of the book.- 1.7 Exercises.- 2 Machine learning control (MLC).- 2.1 Methods of machine learning.- 2.2 MLC with genetic programming.- 2.3 Examples.- 2.4 Exercises.- 2.5 Suggested reading.- 2.6 Interview with Professor Marc Schoenauer.- 3 Methods of linear control theory.- 3.1 Linear systems.- 3.2 Full-state feedback.- Linear quadratic regulator (LQR).- 3.3 Sensor-based state estimation.- Kalman filtering.- 3.4 Sensor-based feedback.- Linear quadratic Gaussian (LQG).- 3.5 System Identification and Model Reduction.- 3.6 Exercises.- 3.7 Suggested reading.- 4 Benchmarking MLC against linear control.- 4.1 Comparison of MLC with LQR on a linear oscillator.- 4.2 Comparison of MLC with Kalman filter on a noisy linear oscillator.- 4.3 Comparison of MLC with LQG for sensor-based feedback.- 4.4 Modifications for small nonlinearity.- 4.5 Exercises.- 4.6 Interview with Professor Shervin Bagheri.- 5 Taming nonlinear dynamics with MLC.- 5.1 Generalized mean-field system.- 5.2 Machine learning control.- 5.3 Derivation outline for the generalized mean-field model.- 5.4 Alternative control approaches.- 5.5 Exercises.- 5.6 Suggested reading.- 5.7 Interview with Professor Mark N. Glauser.- 6 Taming real world flow control experiments with MLC.- 6.1 Separation control over a backward-facing step.- 6.2 Separation control of turbulent boundary layers.- 6.3 Control of mixing layer growth.- 6.4 Alternative model-based control approaches.- 6.5 Implementation of MLC in experiments.- 6.6 Suggested reading.- 6.7 Interview with Professor David Williams.- 7 MLC tactics and strategy.- 7.1 The ideal flow control experiment.- 7.2 Desiderata of the control problem ? from the definition to hardware choices.- 7.3 Time scales of MLC.- 7.4 MLCparameters and convergence.- 7.5 The imperfect experiment.- 8 Future developments.- 8.1 Methodological advances of MLC.- 8.2 System-reduction techniques for MLC ? Coping with high-dimensional input and output.- 8.3 Future applications of MLC.- 8.4 Exercises.- 8.5 Interview with Professor Belinda Batten.- Glossary.- Symbols.- Abbreviations.- Matlab? Code: OpenMLC.- Bibliography.- Index.
Több