Machine Learning Approaches in Financial Analytics
Sorozatcím: Intelligent Systems Reference Library; 254;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 213.99
-
88 752 Ft (84 526 Ft + 5% áfa)
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 17 750 Ft off)
- Kedvezményes ár 71 002 Ft (67 621 Ft + 5% áfa)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
88 752 Ft
Beszerezhetőség
Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2024
- Kiadó Springer Nature Switzerland
- Megjelenés dátuma 2024. augusztus 28.
- Kötetek száma 1 pieces, Book
- ISBN 9783031610363
- Kötéstípus Keménykötés
- Terjedelem483 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk XX, 483 p. 105 illus., 88 illus. in color. Illustrations, black & white 591
Kategóriák
Hosszú leírás:
This book addresses the growing need for a comprehensive guide to the application of machine learning in financial analytics. It offers a valuable resource for both beginners and experienced professionals in finance and data science by covering the theoretical foundations, practical implementations, ethical considerations, and future trends in the field. It bridges the gap between theory and practice, providing readers with the tools and knowledge they need to leverage the power of machine learning in the financial sector responsibly.
TöbbTartalomjegyzék:
.- Part I: Foundations.
.- Chapter 1: Introduction to Optimal Execution.
.- Part II: Tools and techniques.
.- Chapter 2: Python Stack for Design and Visualization in Financial Engineering.
.- Chapter 3: Neurodynamic approaches to cardinality-constrained portfolio optimization.
.- Chapter 4: Fully Homomorphic Encrypted Wavelet Neural Network for Privacy-Preserving Bankruptcy Prediction in Banks.
.- Chapter 5: Tools and Measurement Criteria of Ethical Finance through Computational Finance.
.- Chapter 6: Data Mining Techniques for Predicting the Non-Performing Assets (NPA) of Banks in India.
.- Chapter 7: Multiobjective optimization of mean-variance-downside-risk portfolio selection models.
.- Part III: Risk assessment and ethical considerations.
.- Chapter 8: Bankruptcy Forecasting Of Indian Manufacturing Companies Post Ibc Using Machine Learning Techniques.
.- Chapter 9: Ensemble Deep Reinforcement Learning for Financial Trading. Part IV: Real-world Applications.
.- Chapter 10: Bibliometric Analysis of Digital Financial Reporting.
.- Chapter 11: The Quest for Financing Environmental Sustainability in Emerging Nations: Can Internet Access and Financial Technology be Crucial?
.- Chapter 12: A comprehensive review of Bitcoin’s energy consumption and its environmental implications, etc.
Több
From Regulating Human Behaviour to Regulating Data
6 636 Ft
6 304 Ft